Abstract

Continuum extensions of common dual pairs of operators are presented and consolidated, based on the fractional Fourier transform. In particular, the fractional chirp multiplication, fractional chirp convolution, and fractional scaling operators are defined and expressed in terms of their common nonfractional special cases, revealing precisely how they are interpolations of their conventional counterparts. Optical realizations of these operators are possible with use of common physical components. These three operators can be interpreted as fractional lenses, fractional free space, and fractional imaging systems, respectively. Any optical system consisting of an arbitrary concatenation of sections of free space and thin lenses can be interpreted as a fractional imaging system with spherical reference surfaces. As a special case, a system departing from the classical single-lens imaging condition can be interpreted as a fractional imaging system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (89)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription