Abstract

Microstructured optical fibers (MOFs) with small hole-to-hole spacing and large airholes are designed to compensate the anomalous dispersion and the dispersion slope of single-mode fibers. The geometrical parameters that characterize triangular MOFs are chosen to optimize the fiber length and the compensation over a wide wavelength range. A proper design of the photonic crystal fiber geometry allows us to achieve dispersion values of approximately -1700 ps nm-1 km-1 at 1550 nm and to compensate the dispersion of standard fibers within ±0.5 ps nm-1 km-1 over a 100-nm range. The MOF dispersion properties have been studied by means of a numerical simulator for modal analysis based on the finite-element method.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Dispersion properties of square-lattice photonic crystal fibers

A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri
Opt. Express 12(5) 941-946 (2004)

Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band

Shailendra K. Varshney, Takeshi Fujisawa, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 13(23) 9516-9526 (2005)

Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances

Stéphane Hilaire, Dominique Pagnoux, Philippe Roy, and Sébastien Février
Opt. Express 14(22) 10865-10877 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription