Abstract

A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).
  2. P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
    [CrossRef]
  3. A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
    [CrossRef]
  4. D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
    [CrossRef]
  5. P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
    [CrossRef]
  6. P. M. Narendra, “Reference-free nonuniformity compensation for IR imaging arrays,” in Smart Sensors II, D. F. Barbe, ed., Proc. SPIE252, 10–17 (1980).
    [CrossRef]
  7. J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
    [CrossRef]
  8. J. G. Harris, Y. M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
    [CrossRef]
  9. Y. M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
    [CrossRef]
  10. M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, “Statistical algorithm for non-uniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
    [CrossRef]
  11. S. N. Torres, M. M. Hayat, “Kalman filtering for adaptive nonuniformity correction in infrared focal plane arrays,” J. Opt. Soc. Am. A 20, 470–480 (2003).
    [CrossRef]
  12. W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).
  13. W. F. O’Neil, “Experimental verification of dithered scan nonuniformity correction,” in Proceedings of the 1996 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.
  14. R. C. Hardie, M. M. Hayat, E. E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction using video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
    [CrossRef]
  15. B. M. Ratliff, M. M. Hayat, R. C. Hardie, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
    [CrossRef]
  16. B. M. Ratliff, M. M. Hayat, R. C. Hardie, “An algebraic algorithm for nonuniformity correction in focal-plane arrays,” J. Opt. Soc. Am. A 19, 1737–1747 (2002).
    [CrossRef]
  17. B. M. Ratliff, M. M. Hayat, J. S. Tyo, “Radiometrically-calibrated scene-based nonuniformity correction for infrared array sensors,” in Infrared Technology and Applications XXVIII, B. F. Anderson, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 359–367 (2003).
    [CrossRef]
  18. M. Irani, S. Peleg, “Improving resolution by image registration,” in CVGIP: Graph. Models Image Process. 53, 231–239 (1991).
  19. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
    [CrossRef]
  20. E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
    [CrossRef]

2003 (1)

2002 (1)

2000 (1)

1999 (1)

1998 (1)

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

1997 (1)

Y. M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

1993 (1)

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

1991 (1)

M. Irani, S. Peleg, “Improving resolution by image registration,” in CVGIP: Graph. Models Image Process. 53, 231–239 (1991).

1985 (1)

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Armstrong, E. E.

R. C. Hardie, M. M. Hayat, E. E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction using video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
[CrossRef]

M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, “Statistical algorithm for non-uniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

Barnard, K. J.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Barone, F. R.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Bognar, J. G.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Chatard, J.

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

Chiang, Y. M.

Y. M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

J. G. Harris, Y. M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Chorier, P.

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

Costa, P.

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

Dereniak, E. L.

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

Foss, N. A.

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

Hardie, R. C.

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “An algebraic algorithm for nonuniformity correction in focal-plane arrays,” J. Opt. Soc. Am. A 19, 1737–1747 (2002).
[CrossRef]

R. C. Hardie, M. M. Hayat, E. E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction using video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
[CrossRef]

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
[CrossRef]

Harris, J. G.

Y. M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
[CrossRef]

J. G. Harris, Y. M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

Hayat, M. M.

S. N. Torres, M. M. Hayat, “Kalman filtering for adaptive nonuniformity correction in infrared focal plane arrays,” J. Opt. Soc. Am. A 20, 470–480 (2003).
[CrossRef]

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “An algebraic algorithm for nonuniformity correction in focal-plane arrays,” J. Opt. Soc. Am. A 19, 1737–1747 (2002).
[CrossRef]

R. C. Hardie, M. M. Hayat, E. E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction using video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
[CrossRef]

M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, “Statistical algorithm for non-uniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
[CrossRef]

B. M. Ratliff, M. M. Hayat, J. S. Tyo, “Radiometrically-calibrated scene-based nonuniformity correction for infrared array sensors,” in Infrared Technology and Applications XXVIII, B. F. Anderson, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 359–367 (2003).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

Holst, G. C.

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

Irani, M.

M. Irani, S. Peleg, “Improving resolution by image registration,” in CVGIP: Graph. Models Image Process. 53, 231–239 (1991).

Kruer, M. R.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Manissadjian, A.

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

Milton, A. F.

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

Narendra, P. M.

P. M. Narendra, “Reference-free nonuniformity compensation for IR imaging arrays,” in Smart Sensors II, D. F. Barbe, ed., Proc. SPIE252, 10–17 (1980).
[CrossRef]

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

O’Neil, W. F.

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

W. F. O’Neil, “Experimental verification of dithered scan nonuniformity correction,” in Proceedings of the 1996 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.

Peleg, S.

M. Irani, S. Peleg, “Improving resolution by image registration,” in CVGIP: Graph. Models Image Process. 53, 231–239 (1991).

Perry, D. L.

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

Ratliff, B. M.

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “An algebraic algorithm for nonuniformity correction in focal-plane arrays,” J. Opt. Soc. Am. A 19, 1737–1747 (2002).
[CrossRef]

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
[CrossRef]

B. M. Ratliff, M. M. Hayat, J. S. Tyo, “Radiometrically-calibrated scene-based nonuniformity correction for infrared array sensors,” in Infrared Technology and Applications XXVIII, B. F. Anderson, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 359–367 (2003).
[CrossRef]

Torres, S. N.

S. N. Torres, M. M. Hayat, “Kalman filtering for adaptive nonuniformity correction in infrared focal plane arrays,” J. Opt. Soc. Am. A 20, 470–480 (2003).
[CrossRef]

M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, “Statistical algorithm for non-uniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

Tribolet, P. M.

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

Tyo, J. S.

B. M. Ratliff, M. M. Hayat, J. S. Tyo, “Radiometrically-calibrated scene-based nonuniformity correction for infrared array sensors,” in Infrared Technology and Applications XXVIII, B. F. Anderson, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 359–367 (2003).
[CrossRef]

Watson, E. A.

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Yasuda, B.

R. C. Hardie, M. M. Hayat, E. E. Armstrong, B. Yasuda, “Scene-based nonuniformity correction using video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
[CrossRef]

M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda, “Statistical algorithm for non-uniformity correction in focal-plane arrays,” Appl. Opt. 38, 772–780 (1999).
[CrossRef]

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

Analog Integr. Circuits Signal Process. (1)

Y. M. Chiang, J. G. Harris, “An analog integrated circuit for continuous-time gain and offset calibration of sensor arrays,” Analog Integr. Circuits Signal Process. 12, 231–238 (1997).
[CrossRef]

Appl. Opt. (2)

CVGIP: Graph. Models Image Process (1)

M. Irani, S. Peleg, “Improving resolution by image registration,” in CVGIP: Graph. Models Image Process. 53, 231–239 (1991).

J. Opt. Soc. Am. A (2)

Opt. Eng. (3)

A. F. Milton, F. R. Barone, M. R. Kruer, “Influence of nonuniformity on infrared focal plane array performance,” Opt. Eng. 24, 855–862 (1985).
[CrossRef]

D. L. Perry, E. L. Dereniak, “Linear theory of nonuniformity correction in infrared staring sensors,” Opt. Eng. 32, 1853–1859 (1993).
[CrossRef]

R. C. Hardie, K. J. Barnard, J. G. Bognar, E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37, 247–260 (1998).
[CrossRef]

Other (11)

E. E. Armstrong, M. M. Hayat, R. C. Hardie, S. N. Torres, B. Yasuda, “Nonuniformity correction for improved registration and high-resolution image reconstruction in IR imagery,” in Application of Digital Image Processing XXII, A. G. Tescher and Lockheed Martin Missions Systems, eds., Proc. SPIE3808, 150–161 (1999).
[CrossRef]

B. M. Ratliff, M. M. Hayat, J. S. Tyo, “Radiometrically-calibrated scene-based nonuniformity correction for infrared array sensors,” in Infrared Technology and Applications XXVIII, B. F. Anderson, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 359–367 (2003).
[CrossRef]

B. M. Ratliff, M. M. Hayat, R. C. Hardie, “Algebraic scene-based nonuniformity correction in focal-plane arrays,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, G. C. Holst, ed., Proc. SPIE4372, 114–124 (2001).
[CrossRef]

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

P. M. Tribolet, P. Chorier, A. Manissadjian, P. Costa, J. Chatard, “High-performance infrared detectors at Sofradir,” in Infrared Detectors and Focal Plane Arrays VI, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE4028, 438–456 (2000).
[CrossRef]

P. M. Narendra, N. A. Foss, “Shutterless fixed pattern noise correction for infrared imaging arrays,” in Technical Issues in Focal Plane Development, W. S. Chan, E. Krikorian, eds., Proc. SPIE282, 44–51 (1981).
[CrossRef]

P. M. Narendra, “Reference-free nonuniformity compensation for IR imaging arrays,” in Smart Sensors II, D. F. Barbe, ed., Proc. SPIE252, 10–17 (1980).
[CrossRef]

J. G. Harris, “Continuous-time calibration of VLSI sensors for gain and offset variations,” in Smart Focal Plane Arrays and Focal Plane Array Testing, M. Wigdor, M. A. Massie, eds., Proc. SPIE2474, 23–33 (1995).
[CrossRef]

J. G. Harris, Y. M. Chiang, “Nonuniformity correction using constant average statistics constraint: analog and digital implementations,” in Infrared Technology and Applications XXIII, B. F. Andersen, M. Strojnik, eds., Proc. SPIE3061, 895–905 (1997).
[CrossRef]

W. F. O’Neil, “Dithered scan detector compensation,” in Proceedings of the 1993 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1993).

W. F. O’Neil, “Experimental verification of dithered scan nonuniformity correction,” in Proceedings of the 1996 International Meeting of the Infrared Information Symposium Specialty Group on Passive Sensors (Infrared Information Analysis Center, Ann Arbor, Mich., 1997), Vol. 1, pp. 329–339.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Graphical depiction of the linear interpolation model for subpixel 2D motion. The shaded pixels represent the interpolated irradiance value at time k+1. (b) Graphical representation of the recursive operation of the algorithm. The bold pixel partitions correspond to each Gl, representing the group of detectors whose biases are estimated iteratively in l. The arrows indicate the direction of the algorithm iteration within each Gl.

Fig. 2
Fig. 2

Data set 1: (a) raw, uncorrected image and (b) TPC image. The dynamic range is [294, 304] K. (c) RASBA-corrected image. The dynamic range is [294, 304] K. (d) Radiometric output for frame 1, row 100 from the corrected image sequences.

Fig. 3
Fig. 3

Empirical probability density function of the mean error between the TPC and RASBA-corrected image sequences for data sets 1 and 2.

Fig. 4
Fig. 4

Data set 2: (a) raw, uncorrected image and (b) TPC image. The dynamic range is [284, 328] K. (c) RASBA-corrected image. The dynamic range is [284, 328] K. (d) Radiometric output for frame 1, row 181 from the corrected image sequences.

Fig. 5
Fig. 5

Mean absolute error between TPC and RASBA-corrected data set 1 as a function of number of frame pairs used in correction.

Fig. 6
Fig. 6

Radiometric output for frame 1, row 128 from TPC, ideal-perimeter RASBA-corrected and TPC-perimeter RASBA-corrected 323-K flat-field image sequence.

Fig. 7
Fig. 7

Effect of dead pixels in the calibration perimeter on RASBA performance as a function of severity of bias nonuniformity (NU) and percentage of dead pixels in the calibration perimeter.

Fig. 8
Fig. 8

RASBA-corrected 323-K flat-field image showing projected dead-pixel error. The dynamic range is [320, 325] K.

Fig. 9
Fig. 9

Mean absolute error in algorithm performance as error is induced into the shift estimates utilized.

Fig. 10
Fig. 10

Mean absolute error in algorithm performance as a function of shift region.

Fig. 11
Fig. 11

Percentage error in the shifts corresponding to the surface in Fig. 10.

Tables (1)

Tables Icon

Table 1 Absolute Error Metrics for IR Data Corrections

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

yk(i, j)=a(i, j)zk(i, j)+b(i, j),
yk(i, j)=zk(i, j)+b(i, j).
yk+1(i, j)=|Δβ|[|Δα|zk(i-α-1, j-β-1)+(1-|Δα|)zk(i-α, j-β-1)]+(1-|Δβ|)[|Δα|zk(i-α-1, j-β)+(1-|Δα|)zk(i-α, j-β)]+b(i, j),
yk+1(i, j)=γ1zk(i-α-1, j-β-1)+γ2zk(i-α, j-β-1)+γ3zk(i-α-1, j-β)+γ4zk(i-α, j-β)+b(i, j).
Δ(i, j)=γ1yk(i-α-1, j-β-1)+γ2yk(i-α, j-β-1)+γ3yk(i-α-1, j-β)+γ4yk(i-α, j-β)-yk+1(i, j).
Δ(i, j)=γ1b(i-α-1, j-β-1)+γ2b(i-α, j-β-1)+γ3b(i-α-1, j-β)+γ4b(i-α, j-β)-b(i, j),
=min(Dcal,x+1,Dcal,y+1)min(M,N)G={(Dcal,x+1, Dcal,y+1),,(M, N)}.
bˆ(i, j)=-Δ(i, j)+γ1bˆ(i-α-1, j-β-1)+γ2bˆ(i-α, j-β-1)+γ3bˆ(i-α-1, j-β)+γ4bˆ(i-α, j-β).
bˆ(i, j)=11-γ4 [-Δ(i, j)+γ1bˆ(i-1, j-1)+γ2bˆ(i, j-1)+γ3bˆ(i-1, j)].

Metrics