Abstract

We derive the behavior of the average exit time (i.e., the number of reflections before escape) of a ray path traveling between two perfect mirrors subject to dynamic random-tilt aberrations. Our calculation is performed in the paraxial approximation. When small random tilts are taken into account, we may consider an asymptotic regime that generically reduces the problem to the study of the exit time from an interval for a harmonic, frictionless oscillator driven by Gaussian white noise. Despite its apparent simplicity, the exact solution of this problem remains an open mathematical challenge, and we propose here a simple approximation scheme. For flat mirrors, the natural frequency of the oscillator vanishes, and, in this case, the average exit time is known exactly. It exhibits a 2/3 scaling-law behavior in terms of the variance of the random tilts. This behavior also follows from our approximation scheme, which establishes the consistency of the scaling law. Our mathematical results are confirmed with simulation experiments.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chaotic ray dynamics in an optical cavity with a beam splitter

Graciana Puentes, Andrea Aiello, and J. P. Woerdman
Opt. Lett. 29(9) 929-931 (2004)

Analysis of curvature sensing for large-aperture adaptive optics systems

Mark Milman, David Redding, and Laura Needels
J. Opt. Soc. Am. A 13(6) 1226-1238 (1996)

Autocollimator for spectroscopy of broad resonances with pulsed lasers

L. Kremer, D. Budelsky, D. Platte, and P. von Brentano
Appl. Opt. 34(22) 4827-4834 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription