Abstract

Traditionally, contour interaction has been investigated at the visual acuity limit using a Landolt C and flanking bars, performance being quantified in terms of a percent correct measure. More recently, it has been shown that the properties of the contour interaction are different when larger stimuli are used: Contour interaction is not polarity specific, and spatial frequency tuning for an unflanked C is broader. Here we quantify contour interaction for stimuli 5× larger than the resolution limit in terms of contrast thresholds. We show that polarity of bars has little effect on unfiltered stimuli but does show very different effects on the spatial-frequency-tuning curves for discrimination of the Landolt C. This explains the polarity dependence of crowding at the visual acuity limit and its independence for larger unfiltered targets. Thus the underlying filtering function is composed of more than one mechanism, affected differently depending on the relative polarity of the test and flank contours.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Flom, F. W. Weymouth, D. Kahneman, “Visual resolution and contour interaction,” J. Opt. Soc. Am. 53, 1026–1032 (1963).
    [CrossRef] [PubMed]
  2. M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
    [CrossRef] [PubMed]
  3. M. C. Flom, “Contour interaction and the crowding effect,” Probl. Optom. 3, 237–257 (1991).
  4. H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
    [CrossRef] [PubMed]
  5. F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
    [CrossRef]
  6. S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).
  7. A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
    [CrossRef]
  8. S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
    [CrossRef] [PubMed]
  9. R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
    [CrossRef]
  10. L. Liu, “Can the amplitude difference spectrum peak frequency explain the foveal crowding effect?” Vision Res. 41, 3693–3704 (2001).
    [CrossRef] [PubMed]
  11. R. F. Hess, C. B. Williams, A. Chaudhry, “Contour interaction for an easily resolvable stimulus,” J. Opt. Soc. Am. A 18, 2414–2418 (2001).
    [CrossRef]
  12. S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
    [CrossRef] [PubMed]
  13. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1347 (1991).
    [CrossRef] [PubMed]
  14. F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
    [CrossRef]
  15. F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
    [CrossRef]
  16. V. M. Bondarko, M. V. Danilova, “What spatial frequencies do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997).
    [CrossRef] [PubMed]
  17. A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: an explanation of how we see certain objects,” Proc. Soc. Inf. Disp. 21, 219–227 (1980).
  18. D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination,” Vision Res. 31, 1399–1415 (1991).
    [CrossRef] [PubMed]
  19. K. R. Alexander, W. Xie, D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2375–2382 (1994).
    [CrossRef]
  20. J. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994).
    [CrossRef] [PubMed]

2002

S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
[CrossRef] [PubMed]

2001

L. Liu, “Can the amplitude difference spectrum peak frequency explain the foveal crowding effect?” Vision Res. 41, 3693–3704 (2001).
[CrossRef] [PubMed]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
[CrossRef] [PubMed]

R. F. Hess, C. B. Williams, A. Chaudhry, “Contour interaction for an easily resolvable stimulus,” J. Opt. Soc. Am. A 18, 2414–2418 (2001).
[CrossRef]

2000

R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
[CrossRef]

1999

S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

1997

V. M. Bondarko, M. V. Danilova, “What spatial frequencies do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997).
[CrossRef] [PubMed]

1994

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

J. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994).
[CrossRef] [PubMed]

K. R. Alexander, W. Xie, D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2375–2382 (1994).
[CrossRef]

1991

M. C. Flom, “Contour interaction and the crowding effect,” Probl. Optom. 3, 237–257 (1991).

H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
[CrossRef] [PubMed]

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination,” Vision Res. 31, 1399–1415 (1991).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1347 (1991).
[CrossRef] [PubMed]

1980

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: an explanation of how we see certain objects,” Proc. Soc. Inf. Disp. 21, 219–227 (1980).

1963

M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
[CrossRef] [PubMed]

M. C. Flom, F. W. Weymouth, D. Kahneman, “Visual resolution and contour interaction,” J. Opt. Soc. Am. 53, 1026–1032 (1963).
[CrossRef] [PubMed]

Alexander, K. R.

Bondarko, V. M.

V. M. Bondarko, M. V. Danilova, “What spatial frequencies do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997).
[CrossRef] [PubMed]

Chaudhry, A.

Chung, S. T. L.

S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
[CrossRef] [PubMed]

S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
[CrossRef] [PubMed]

Dakin, S. C.

R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
[CrossRef]

Danilova, M. V.

V. M. Bondarko, M. V. Danilova, “What spatial frequencies do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997).
[CrossRef] [PubMed]

Derlacki, D. J.

Epp, K.

S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).

Flom, M. C.

M. C. Flom, “Contour interaction and the crowding effect,” Probl. Optom. 3, 237–257 (1991).

M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
[CrossRef] [PubMed]

M. C. Flom, F. W. Weymouth, D. Kahneman, “Visual resolution and contour interaction,” J. Opt. Soc. Am. 53, 1026–1032 (1963).
[CrossRef] [PubMed]

Ginsburg, A. P.

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: an explanation of how we see certain objects,” Proc. Soc. Inf. Disp. 21, 219–227 (1980).

Gray, L. S.

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

Harvey, L. O.

H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
[CrossRef] [PubMed]

Heath, G.

M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, C. B. Williams, A. Chaudhry, “Contour interaction for an easily resolvable stimulus,” J. Opt. Soc. Am. A 18, 2414–2418 (2001).
[CrossRef]

R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
[CrossRef]

Hill, N. J.

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

Kahneman, D.

Kapoor, N.

R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
[CrossRef]

Kooi, F. L.

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

Leat, S. J.

S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).

Legge, G. E.

S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
[CrossRef] [PubMed]

S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
[CrossRef] [PubMed]

Levi, D. M.

S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
[CrossRef] [PubMed]

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

Li, W.

S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).

Liu, L.

L. Liu, “Can the amplitude difference spectrum peak frequency explain the foveal crowding effect?” Vision Res. 41, 3693–3704 (2001).
[CrossRef] [PubMed]

McGraw, P. V.

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

Parish, D. H.

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination,” Vision Res. 31, 1399–1415 (1991).
[CrossRef] [PubMed]

Pelli, D. G.

J. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1347 (1991).
[CrossRef] [PubMed]

Rentschler, I.

H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
[CrossRef] [PubMed]

Simmers, A. J.

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

Solomon, J.

J. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994).
[CrossRef] [PubMed]

Sperling, G.

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination,” Vision Res. 31, 1399–1415 (1991).
[CrossRef] [PubMed]

Strasburger, H.

H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
[CrossRef] [PubMed]

Takahashi, E.

M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
[CrossRef] [PubMed]

Tjan, B. S.

S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
[CrossRef] [PubMed]

Toet, A.

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

Tripathy, S. P.

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

Weymouth, F. W.

Wichmann, F. A.

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

Williams, C. B.

Winn, B.

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

Xie, W.

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1347 (1991).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

S. J. Leat, W. Li, K. Epp, “Crowding in central and eccentric vision: the effects of contour interaction and attention,” Invest. Ophthalmol. Visual Sci. 40, 504–12 (1999).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

J. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

A. J. Simmers, L. S. Gray, P. V. McGraw, B. Winn, “Contour interaction for high and low contrast optotypes in normal and amblyopic observers,” Ophthalmic Physiol. Opt. 19, 253–260 (1999).
[CrossRef]

Percept. Psychophys.

H. Strasburger, L. O. Harvey, I. Rentschler, “Contrast thresholds for the identification of numeric charters in direct and eccentric view,” Percept. Psychophys. 49, 495–508 (1991).
[CrossRef] [PubMed]

F. A. Wichmann, N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

Probl. Optom.

M. C. Flom, “Contour interaction and the crowding effect,” Probl. Optom. 3, 237–257 (1991).

Proc. Soc. Inf. Disp.

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: an explanation of how we see certain objects,” Proc. Soc. Inf. Disp. 21, 219–227 (1980).

Science

M. C. Flom, G. Heath, E. Takahashi, “Crowding interaction and visual resolution: contralateral effects,” Science 142, 979–980 (1963).
[CrossRef] [PubMed]

Spatial Vision

F. L. Kooi, A. Toet, S. P. Tripathy, D. M. Levi, “The effect of similarity and duration on spatial interactions in peripheral vision,” Spatial Vision 8, 255–279 (1994).
[CrossRef]

Vision Res.

S. T. L. Chung, D. M. Levi, G. E. Legge, “Spatial frequency and contrast properties of crowding,” Vision Res. 41, 1833–1850 (2001).
[CrossRef] [PubMed]

R. F. Hess, S. C. Dakin, N. Kapoor, “Foveal contour interaction: physics or physiology?” Vision Res. 20, 365–370 (2000).
[CrossRef]

L. Liu, “Can the amplitude difference spectrum peak frequency explain the foveal crowding effect?” Vision Res. 41, 3693–3704 (2001).
[CrossRef] [PubMed]

S. T. L. Chung, G. E. Legge, B. S. Tjan, “Spatial frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 1571–1581 (2002).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1347 (1991).
[CrossRef] [PubMed]

D. H. Parish, G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination,” Vision Res. 31, 1399–1415 (1991).
[CrossRef] [PubMed]

V. M. Bondarko, M. V. Danilova, “What spatial frequencies do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153–2156 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contrast thresholds for orientation discrimination of unfiltered Landolt C flanked by same- and opposite-polarity bars. (a)–(c) Data of three subjects; (d) mean. Each shaded column represents a different bar separation (0, 0.5, and 1 bar-width separation) and contains four polarity combinations, indicated by squares as follows: completely filled, negative C and negative bars; bottom-filled, negative C and positive bars; top-filled, positive C and negative bars; open, positive C and positive bars). The right (white) column shows the thresholds for unflanked negative and positive Cs. The bars represent 68% confidence intervals. (e) Data from (d) replotted with a linear abscissa.

Fig. 2
Fig. 2

Sample stimuli are filtered with four different center frequencies, marked by arrows in Fig. 3. The Landolt C is unflanked in the first row and is flanked by same- and opposite-polarity bars at 0.5 gap separation and filtered identically to the C in the second and third rows. For demonstration purposes the dark Landolt C (negative polarity) is presented at suprathreshold contrast in all images that show the sum of the two interlaced frames (C and bars). At high spatial frequencies, Cs flanked by negative and positive bars show no significant difference. At 1.88 cpl (the peak sensitivity in the unflanked condition), negative bars show less effect on the detectability of the gap than bright bars do. At 0.94 cpl, however, the localization of the gap is much more difficult with flanking negative bars but unchanged for positive bars. At even lower spatial frequencies the gap itself is no longer visible. Now the barely visible irregularity of the filtered C does lighten the negative polarity bar adjacent to the gap. This change of feature helps to discriminate the orientation of the C and underlies the facilitation at very low spatial frequencies seen with negative bars (Fig. 3). This effect is not present with positive bars.

Fig. 3
Fig. 3

Tuning curves for orientation discrimination of unflanked (solid curves) and flanked (dashed and dotted curves) Landolt Cs plotted for (a)–(c) three subjects and (d) the mean. The size of the C was 0.5 deg, corresponding to approximately five times the visual acuity limit. The arrows correspond to the spatial frequencies used in Fig. 2. The curves in the unflanked condition are symmetric on a log-spatial-frequency scale and are nearly identical for all subjects. The peak spatial frequency is 1.9 cpl, and the bandwidth at half peak sensitivity is 1.7 octaves. For all three subjects the peak of the tuning curve is shifted to higher spatial frequencies (2.8 cpl) by negative-polarity bars, which have a very marked detrimental effect on discrimination at 0.94 cpl. For very low frequencies, however, negative-polarity bars do facilitate discrimination (see Fig. 2). Positive-polarity bars show a more even reduction of sensitivity across spatial frequencies.

Metrics