Abstract

Experimental results are presented demonstrating that humans can make effective use of prior knowledge for detecting and identifying visual signals in static noise. The signals were selected from an orthogonal Hadamard set. There was a marked drop in detection performance when observers did not know which signal was present. The drop was in excellent quantitative agreement with that predicted by the theory of signal detectability. The statistical efficiency of the human observers was 33% in both cases (detection with and without prior knowledge). When interpreted in terms of channel uncertainty, the detection results demonstrated an upper limit of 10 orthogonal, uncertain channels. The statistical efficiency for the Hadamard signal-identification task was 40%. All the results are consistent with the standard theory of signal detectability based on a Bayesian maximum a posteriori probability decision strategy using cross correlation (or matched filtering) of expected signal profiles with those present in the display.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).
  2. D. C. Earle, G. Lowe, “Channel, temporal, and composite uncertainty in detection and recognition of auditory and visual signals,” Percept. Psychophys. 9, 177–181 (1971).
    [CrossRef]
  3. D. J. Lasley, T. E. Cohn, “Detection of a luminance increment: effect of temporal uncertainty,” J. Opt. Soc. Am. 71, 845–850 (1981).
    [CrossRef] [PubMed]
  4. R. Sekuler, K. Ball, “Mental set alters visibility of moving targets,” Science 198, 60–62 (1977).
    [CrossRef] [PubMed]
  5. T. E. Cohn, D. J. Lasley, “Detectability of a luminance increment: effect of spatial uncertainty,” J. Opt. Soc. Am. 64, 1715–1719 (1974).
    [CrossRef] [PubMed]
  6. S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
    [PubMed]
  7. R. G. Swensson, P. F. Judy, “Detection of noisy visual targets: model for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
    [CrossRef] [PubMed]
  8. A. E. Burgess, H. Ghandeharian, “Visual signal detection. II. Effect of signal-location identification,” J. Opt. Soc. Am. A 1, 906–910 (1984).
    [CrossRef] [PubMed]
  9. D. G. Greenhouse, T. E. Cohn, “Effect of uncertainty on detectability of a visual stimulus,” J. Opt. Soc. Am. 68, 266–267 (1978).
    [CrossRef] [PubMed]
  10. N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
    [CrossRef] [PubMed]
  11. E. T. Davis, “Allocation of attention: uncertainty effects when monitoring one or two visual gratings of non-contiguous spatial frequencies,” Percept. Psychophys. 29, 618–622 (1981).
    [CrossRef] [PubMed]
  12. E. T. Davis, N. Graham, “Spatial frequency uncertainty effects in the detection of sinusoidal gratings,” Vision Res. 21, 705–712 (1981).
    [CrossRef] [PubMed]
  13. A. E. Burgess, H. Ghandeharian, “Visual signal detection I: phase sensitive detection,” J. Opt. Soc. Am. A 1, 900–905 (1984).
    [CrossRef] [PubMed]
  14. W. P. Tanner, “Physiological implications of psychophysical data,” Ann N. Y. Acad. Sci. 89, 752–765 (1961).
    [CrossRef] [PubMed]
  15. D. G. Pelli, “Effects of Visual Noise,” Ph.D. dissertation (University of Cambridge, Cambridge, 1981);J. Opt. Soc. A 2, 1508–1532 (1985).
  16. H. R. Raemer, Statistical Communication Theory and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1969).
  17. P. Elliot, “Forced choice tables (Appendix 1),” in Signal Detection and Recognition by Human Observers, J. A. Swets, ed. (Wiley, New York, 1964), pp. 679–684.
  18. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966), p. 307.
  19. A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
    [CrossRef] [PubMed]
  20. A. E. Burgess, “Statistical efficiency of perceptual decisions,” Proc. Soc. Photo-Instrum. Eng. 454, 18–26 (1984).
  21. A. E. Burgess, “Detection and identification efficiency: an update,” Proc. Soc. Photo-Instrum. Eng.535, (to be published).
  22. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 250–254.
  23. L. W. Nolte, D. Jaarsma, “More on the detection of one of M orthogonal signals,” J. Acoust. Soc. Am. 41, 497–505 (1967).
    [CrossRef]
  24. W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measurements,” J. Acoust. Soc. Am. 30, 922–928 (1958).
    [CrossRef]
  25. J. W. Griffiths, N. S. Nagaraja, “Visual detection in intensity modulated displays,” J. Brit. IRE 25, 225–240 (1963).
  26. H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1978).
    [CrossRef]
  27. H. B. Barlow, “The efficiency of perceptual decisions,” Phil. Trans. R. Soc. London Ser. B 290, 71–82 (1980).
    [CrossRef]
  28. A. Van Meeteran, H. B. Barlow, “The efficiency of detecting sinusoidal modulation of dot density in random figures,” Vision Res. 21, 765–777 (1981).
    [CrossRef]
  29. A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–829 (1983).
    [CrossRef]
  30. D. Kersten, “A comparison of human and ideal performance for the detection of visual pattern,” Ph.D. dissertation (University of Minnesota, Minneapolis, Minn., 1983).
  31. G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
    [CrossRef] [PubMed]
  32. R. L. Gregory, The Intelligent Eye (Weidenfeld and Nicholson, London, 1970).
  33. R. L. Gregory, Mind in Science (Weidenfeld and Nicholson, London, 1981), pp. 383–415.
  34. J. Miller, States of Mind (Methuen, New York, 1983), pp. 44–64 (interview with R. L. Gregory on visual perception and illusions).
  35. D. W. Hamlyn, “Unconscious inference and judgement in perception,” in Images, Perception, and Knowledge, J. M. Nichols, ed. (Reidel, Dordrecht, The Netherlands, 1977), p. 205.
  36. D. Marr, Vision (Freeman, San Francisco, 1983), p. 326.
  37. S. L. Guth, “On probability summation,” Vision Res. 11, 747–750 (1971).
    [CrossRef] [PubMed]
  38. J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–233 (1981).
    [CrossRef] [PubMed]
  39. A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, Berlin, 1983).
    [CrossRef]
  40. J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
    [CrossRef] [PubMed]
  41. R. L. DeValois, D. G. Albrecht, L. G. Thorell, in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), p. 54.
  42. H. Kabrisky, A Proposed Model for Visual Information Processing in the Human Brain (U. Illinois Press, Urbana, Ill., 1966).
  43. G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
    [CrossRef]
  44. R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
    [CrossRef] [PubMed]
  45. D. Kersten, “Spatial summation in visual noise,” Vision Res. 24, 1977–1990 (1984).
    [CrossRef] [PubMed]

1984 (4)

1983 (1)

A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–829 (1983).
[CrossRef]

1981 (7)

A. Van Meeteran, H. B. Barlow, “The efficiency of detecting sinusoidal modulation of dot density in random figures,” Vision Res. 21, 765–777 (1981).
[CrossRef]

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–233 (1981).
[CrossRef] [PubMed]

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

E. T. Davis, “Allocation of attention: uncertainty effects when monitoring one or two visual gratings of non-contiguous spatial frequencies,” Percept. Psychophys. 29, 618–622 (1981).
[CrossRef] [PubMed]

E. T. Davis, N. Graham, “Spatial frequency uncertainty effects in the detection of sinusoidal gratings,” Vision Res. 21, 705–712 (1981).
[CrossRef] [PubMed]

R. G. Swensson, P. F. Judy, “Detection of noisy visual targets: model for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

D. J. Lasley, T. E. Cohn, “Detection of a luminance increment: effect of temporal uncertainty,” J. Opt. Soc. Am. 71, 845–850 (1981).
[CrossRef] [PubMed]

1980 (1)

H. B. Barlow, “The efficiency of perceptual decisions,” Phil. Trans. R. Soc. London Ser. B 290, 71–82 (1980).
[CrossRef]

1979 (1)

R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
[CrossRef] [PubMed]

1978 (3)

H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1978).
[CrossRef]

D. G. Greenhouse, T. E. Cohn, “Effect of uncertainty on detectability of a visual stimulus,” J. Opt. Soc. Am. 68, 266–267 (1978).
[CrossRef] [PubMed]

N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
[CrossRef] [PubMed]

1977 (1)

R. Sekuler, K. Ball, “Mental set alters visibility of moving targets,” Science 198, 60–62 (1977).
[CrossRef] [PubMed]

1976 (1)

G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
[CrossRef]

1975 (1)

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

1974 (2)

T. E. Cohn, D. J. Lasley, “Detectability of a luminance increment: effect of spatial uncertainty,” J. Opt. Soc. Am. 64, 1715–1719 (1974).
[CrossRef] [PubMed]

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

1971 (2)

S. L. Guth, “On probability summation,” Vision Res. 11, 747–750 (1971).
[CrossRef] [PubMed]

D. C. Earle, G. Lowe, “Channel, temporal, and composite uncertainty in detection and recognition of auditory and visual signals,” Percept. Psychophys. 9, 177–181 (1971).
[CrossRef]

1967 (1)

L. W. Nolte, D. Jaarsma, “More on the detection of one of M orthogonal signals,” J. Acoust. Soc. Am. 41, 497–505 (1967).
[CrossRef]

1963 (1)

J. W. Griffiths, N. S. Nagaraja, “Visual detection in intensity modulated displays,” J. Brit. IRE 25, 225–240 (1963).

1961 (1)

W. P. Tanner, “Physiological implications of psychophysical data,” Ann N. Y. Acad. Sci. 89, 752–765 (1961).
[CrossRef] [PubMed]

1958 (1)

W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measurements,” J. Acoust. Soc. Am. 30, 922–928 (1958).
[CrossRef]

1954 (1)

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).

1951 (1)

G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
[CrossRef] [PubMed]

Albrecht, D. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), p. 54.

Ball, K.

R. Sekuler, K. Ball, “Mental set alters visibility of moving targets,” Science 198, 60–62 (1977).
[CrossRef] [PubMed]

Barlow, H. B.

A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–829 (1983).
[CrossRef]

A. Van Meeteran, H. B. Barlow, “The efficiency of detecting sinusoidal modulation of dot density in random figures,” Vision Res. 21, 765–777 (1981).
[CrossRef]

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

H. B. Barlow, “The efficiency of perceptual decisions,” Phil. Trans. R. Soc. London Ser. B 290, 71–82 (1980).
[CrossRef]

H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1978).
[CrossRef]

Birdsall, T. G.

W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measurements,” J. Acoust. Soc. Am. 30, 922–928 (1958).
[CrossRef]

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).

Brown, D. G.

R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
[CrossRef] [PubMed]

Burgess, A. E.

A. E. Burgess, H. Ghandeharian, “Visual signal detection. II. Effect of signal-location identification,” J. Opt. Soc. Am. A 1, 906–910 (1984).
[CrossRef] [PubMed]

A. E. Burgess, H. Ghandeharian, “Visual signal detection I: phase sensitive detection,” J. Opt. Soc. Am. A 1, 900–905 (1984).
[CrossRef] [PubMed]

A. E. Burgess, “Statistical efficiency of perceptual decisions,” Proc. Soc. Photo-Instrum. Eng. 454, 18–26 (1984).

A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–829 (1983).
[CrossRef]

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

A. E. Burgess, “Detection and identification efficiency: an update,” Proc. Soc. Photo-Instrum. Eng.535, (to be published).

Cohn, T. E.

Davis, E. T.

E. T. Davis, “Allocation of attention: uncertainty effects when monitoring one or two visual gratings of non-contiguous spatial frequencies,” Percept. Psychophys. 29, 618–622 (1981).
[CrossRef] [PubMed]

E. T. Davis, N. Graham, “Spatial frequency uncertainty effects in the detection of sinusoidal gratings,” Vision Res. 21, 705–712 (1981).
[CrossRef] [PubMed]

DeValois, R. L.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), p. 54.

Earle, D. C.

D. C. Earle, G. Lowe, “Channel, temporal, and composite uncertainty in detection and recognition of auditory and visual signals,” Percept. Psychophys. 9, 177–181 (1971).
[CrossRef]

Elliot, P.

P. Elliot, “Forced choice tables (Appendix 1),” in Signal Detection and Recognition by Human Observers, J. A. Swets, ed. (Wiley, New York, 1964), pp. 679–684.

Fox, W. C.

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).

Ghandeharian, H.

Goodenough, D. J.

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

Graham, N.

E. T. Davis, N. Graham, “Spatial frequency uncertainty effects in the detection of sinusoidal gratings,” Vision Res. 21, 705–712 (1981).
[CrossRef] [PubMed]

N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966), p. 307.

Greenhouse, D. G.

Gregory, R. L.

R. L. Gregory, The Intelligent Eye (Weidenfeld and Nicholson, London, 1970).

R. L. Gregory, Mind in Science (Weidenfeld and Nicholson, London, 1981), pp. 383–415.

Griffiths, J. W.

J. W. Griffiths, N. S. Nagaraja, “Visual detection in intensity modulated displays,” J. Brit. IRE 25, 225–240 (1963).

Guth, S. L.

S. L. Guth, “On probability summation,” Vision Res. 11, 747–750 (1971).
[CrossRef] [PubMed]

Hamlyn, D. W.

D. W. Hamlyn, “Unconscious inference and judgement in perception,” in Images, Perception, and Knowledge, J. M. Nichols, ed. (Reidel, Dordrecht, The Netherlands, 1977), p. 205.

Hauske, G.

G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
[CrossRef]

Heise, G. A.

G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
[CrossRef] [PubMed]

Jaarsma, D.

L. W. Nolte, D. Jaarsma, “More on the detection of one of M orthogonal signals,” J. Acoust. Soc. Am. 41, 497–505 (1967).
[CrossRef]

Jennings, R. J.

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

Judy, P. F.

R. G. Swensson, P. F. Judy, “Detection of noisy visual targets: model for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

Kabrisky, H.

H. Kabrisky, A Proposed Model for Visual Information Processing in the Human Brain (U. Illinois Press, Urbana, Ill., 1966).

Kersten, D.

D. Kersten, “Spatial summation in visual noise,” Vision Res. 24, 1977–1990 (1984).
[CrossRef] [PubMed]

D. Kersten, “A comparison of human and ideal performance for the detection of visual pattern,” Ph.D. dissertation (University of Minnesota, Minneapolis, Minn., 1983).

Lapp, U.

G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
[CrossRef]

Lasley, D. J.

Lichten, W.

G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
[CrossRef] [PubMed]

Lowe, G.

D. C. Earle, G. Lowe, “Channel, temporal, and composite uncertainty in detection and recognition of auditory and visual signals,” Percept. Psychophys. 9, 177–181 (1971).
[CrossRef]

Lusted, L. B.

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

Marr, D.

D. Marr, Vision (Freeman, San Francisco, 1983), p. 326.

Metz, C. E.

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

Miller, G. A.

G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
[CrossRef] [PubMed]

Miller, J.

J. Miller, States of Mind (Methuen, New York, 1983), pp. 44–64 (interview with R. L. Gregory on visual perception and illusions).

Nachmias, J.

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–233 (1981).
[CrossRef] [PubMed]

N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
[CrossRef] [PubMed]

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Nagaraja, N. S.

J. W. Griffiths, N. S. Nagaraja, “Visual detection in intensity modulated displays,” J. Brit. IRE 25, 225–240 (1963).

Nolte, L. W.

L. W. Nolte, D. Jaarsma, “More on the detection of one of M orthogonal signals,” J. Acoust. Soc. Am. 41, 497–505 (1967).
[CrossRef]

Pastel, M. S.

R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, “Effects of Visual Noise,” Ph.D. dissertation (University of Cambridge, Cambridge, 1981);J. Opt. Soc. A 2, 1508–1532 (1985).

Peterson, W. W.

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).

Pratt, W. K.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 250–254.

Raemer, H. R.

H. R. Raemer, Statistical Communication Theory and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1969).

Robson, J.

N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
[CrossRef] [PubMed]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Sekuler, R.

R. Sekuler, K. Ball, “Mental set alters visibility of moving targets,” Science 198, 60–62 (1977).
[CrossRef] [PubMed]

Starr, S. J.

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

Swensson, R. G.

R. G. Swensson, P. F. Judy, “Detection of noisy visual targets: model for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966), p. 307.

Tanner, W. P.

W. P. Tanner, “Physiological implications of psychophysical data,” Ann N. Y. Acad. Sci. 89, 752–765 (1961).
[CrossRef] [PubMed]

W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measurements,” J. Acoust. Soc. Am. 30, 922–928 (1958).
[CrossRef]

Thorell, L. G.

R. L. DeValois, D. G. Albrecht, L. G. Thorell, in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), p. 54.

Van Meeteran, A.

A. Van Meeteran, H. B. Barlow, “The efficiency of detecting sinusoidal modulation of dot density in random figures,” Vision Res. 21, 765–777 (1981).
[CrossRef]

Wagner, R. F.

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, Berlin, 1983).
[CrossRef]

Wolfe, W.

G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
[CrossRef]

Ann N. Y. Acad. Sci. (1)

W. P. Tanner, “Physiological implications of psychophysical data,” Ann N. Y. Acad. Sci. 89, 752–765 (1961).
[CrossRef] [PubMed]

Biol. Cybernet. (1)

G. Hauske, W. Wolfe, U. Lapp, “Matched filters in human vision,” Biol. Cybernet. 22, 181–188 (1976).
[CrossRef]

IRE Trans. Inf. Theory (1)

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954).

J. Acoust. Soc. Am. (2)

L. W. Nolte, D. Jaarsma, “More on the detection of one of M orthogonal signals,” J. Acoust. Soc. Am. 41, 497–505 (1967).
[CrossRef]

W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measurements,” J. Acoust. Soc. Am. 30, 922–928 (1958).
[CrossRef]

J. Brit. IRE (1)

J. W. Griffiths, N. S. Nagaraja, “Visual detection in intensity modulated displays,” J. Brit. IRE 25, 225–240 (1963).

J. Exp. Psychol. (1)

G. A. Miller, G. A. Heise, W. Lichten, “The intelligibility of speech as a function of the context of the test materials,” J. Exp. Psychol. 41, 329–335 (1951).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of information theory to the assessment of computed tomography,” Med. Phys. 6, 83–94 (1979).
[CrossRef] [PubMed]

Percept. Psychophys. (3)

R. G. Swensson, P. F. Judy, “Detection of noisy visual targets: model for the effects of spatial uncertainty and signal-to-noise ratio,” Percept. Psychophys. 29, 521–534 (1981).
[CrossRef] [PubMed]

D. C. Earle, G. Lowe, “Channel, temporal, and composite uncertainty in detection and recognition of auditory and visual signals,” Percept. Psychophys. 9, 177–181 (1971).
[CrossRef]

E. T. Davis, “Allocation of attention: uncertainty effects when monitoring one or two visual gratings of non-contiguous spatial frequencies,” Percept. Psychophys. 29, 618–622 (1981).
[CrossRef] [PubMed]

Phil. Trans. R. Soc. London Ser. B (1)

H. B. Barlow, “The efficiency of perceptual decisions,” Phil. Trans. R. Soc. London Ser. B 290, 71–82 (1980).
[CrossRef]

Proc. Soc. Photo-Instrum. Eng. (1)

A. E. Burgess, “Statistical efficiency of perceptual decisions,” Proc. Soc. Photo-Instrum. Eng. 454, 18–26 (1984).

Radiology (1)

S. J. Starr, C. E. Metz, L. B. Lusted, D. J. Goodenough, “Visual detection and localization of radiological images,” Radiology 116, 533–538 (1975).
[PubMed]

Science (2)

R. Sekuler, K. Ball, “Mental set alters visibility of moving targets,” Science 198, 60–62 (1977).
[CrossRef] [PubMed]

A. E. Burgess, R. F. Wagner, R. J. Jennings, H. B. Barlow, “Efficiency of human visual signal detection,” Science 214, 93–94 (1981).
[CrossRef] [PubMed]

Vision Res. (9)

H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1978).
[CrossRef]

A. Van Meeteran, H. B. Barlow, “The efficiency of detecting sinusoidal modulation of dot density in random figures,” Vision Res. 21, 765–777 (1981).
[CrossRef]

A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–829 (1983).
[CrossRef]

E. T. Davis, N. Graham, “Spatial frequency uncertainty effects in the detection of sinusoidal gratings,” Vision Res. 21, 705–712 (1981).
[CrossRef] [PubMed]

N. Graham, J. Robson, J. Nachmias, “Grating summation in fovea and periphery,” Vision Res. 18, 815–826 (1978).
[CrossRef] [PubMed]

D. Kersten, “Spatial summation in visual noise,” Vision Res. 24, 1977–1990 (1984).
[CrossRef] [PubMed]

S. L. Guth, “On probability summation,” Vision Res. 11, 747–750 (1971).
[CrossRef] [PubMed]

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–233 (1981).
[CrossRef] [PubMed]

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Other (15)

R. L. DeValois, D. G. Albrecht, L. G. Thorell, in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), p. 54.

H. Kabrisky, A Proposed Model for Visual Information Processing in the Human Brain (U. Illinois Press, Urbana, Ill., 1966).

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, Berlin, 1983).
[CrossRef]

D. G. Pelli, “Effects of Visual Noise,” Ph.D. dissertation (University of Cambridge, Cambridge, 1981);J. Opt. Soc. A 2, 1508–1532 (1985).

H. R. Raemer, Statistical Communication Theory and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1969).

P. Elliot, “Forced choice tables (Appendix 1),” in Signal Detection and Recognition by Human Observers, J. A. Swets, ed. (Wiley, New York, 1964), pp. 679–684.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966), p. 307.

D. Kersten, “A comparison of human and ideal performance for the detection of visual pattern,” Ph.D. dissertation (University of Minnesota, Minneapolis, Minn., 1983).

R. L. Gregory, The Intelligent Eye (Weidenfeld and Nicholson, London, 1970).

R. L. Gregory, Mind in Science (Weidenfeld and Nicholson, London, 1981), pp. 383–415.

J. Miller, States of Mind (Methuen, New York, 1983), pp. 44–64 (interview with R. L. Gregory on visual perception and illusions).

D. W. Hamlyn, “Unconscious inference and judgement in perception,” in Images, Perception, and Knowledge, J. M. Nichols, ed. (Reidel, Dordrecht, The Netherlands, 1977), p. 205.

D. Marr, Vision (Freeman, San Francisco, 1983), p. 326.

A. E. Burgess, “Detection and identification efficiency: an update,” Proc. Soc. Photo-Instrum. Eng.535, (to be published).

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 250–254.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An example of the displayed image on a 2AFC detection trial (SKE condition). The menu of possible Hadamard signals is shown on the left, and copies of the signal selected for the present trial are shown above the two noise fields (each 32 × 32 pixels). One noise field contains the signal, and the observer is asked to select the most probable. In 1-of-10 uncertainty trials the display is identical except that the reference copies above the noise fields are not present.

Fig. 2
Fig. 2

The 16 Hadamard signals that can be generated on a 4 by 4 matrix. The bright pixels have a contrast of +A relative to background, and the dark pixels have a contrast of −A. Signals are ordered according to x and y sequency (which is one less than the number of edges). The 10 signals above and left of the diagonal (including those on the diagonal) were used for the main experiments. This set consists of signals with a total sequency (x + y) of 5 or less. The human 2AFC detectability index for SNR = 4 is shown below each signal.

Fig. 3
Fig. 3

Results of a Monte Carlo simulation of ideal observer performance [d′as a function of SNR, (E/N0)1/2] for the 2AFC detection task with four different values of signal uncertainty (1, 10, 64, and 1024). The dashed curves are approximations based on Eq. (A12), described in Appendix A. The approximation gives a good fit to results. The probability of correct response can be determined from the abscissa on the right of the figure.

Fig. 4
Fig. 4

Signal detectability results as a function of SNR for two human observers under two experimental conditions (SKE and 1-of-10 uncertainty). The SNR was varied by changing signal contrast. The three theoretical curves illustrate d′ upper limits for the ideal observer for three values of signal uncertainty (M equal to 1, 10, and 64). Each datum is based on 512 trials, and the standard deviation of d′ is approximately 0.1.

Fig. 5
Fig. 5

The human results of Fig. 4 are replotted and compared with the theoretical prediction based on an observer that has an internal-noise variance 2.0 times the image-noise variance. Aside from this internal noise, the theoretical observer is assumed to be ideal. This model gives a fair fit to both SKE and signal-uncertain data. The solid and dashed lines represent performances for an observer doing the two tasks at a statistical efficiency of 33%.

Fig. 6
Fig. 6

A comparison of signal detectability for the two experimental conditions (SKE and 1-of-10 uncertainty). The solid line represents the same comparison for the ideal observer. The good agreement suggests that the same source of human inefficiency is present for both tasks.

Fig. 7
Fig. 7

Percentage-correct response data for the 2AFC detection (SKE) and 10AFC identification tasks. The SNR was varied by changing signal contrast. The solid lines are theory of signal detectability predictions for observers with efficiencies of 33% (for 2AFC) and 40% (for 10AFC). The 10AFC experiment used 512 trials per datum.

Fig. 8
Fig. 8

Experimental detectability results for the 10AFC signal-identification task are plotted together with the 2AFC signal-known-exactly detection data. These data are simple transformations from the percentage-correct-response data in Fig. 7. The results lie on a common line, indicating that the same sources of observer inefficiency are present in both tasks. The standard deviations for d′ values are 0.1 and 0.07 for the 2AFC and 10AFC results, respectively.

Tables (1)

Tables Icon

Table 1 Average of Two Observer Results for 2AFC Detection of All Members of the 4 × 4 Hadamard Set under Signal-Known-Exactly Conditionsa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R A = i x A ( i ) s ( i , 3 ) and R b = i x B ( i ) s ( i , 3 ) ,
L = H j exp [ i x ( i ) s ( i , j ) / σ 2 ] = H j L j ,
P ( j / X A ) = P A ( j ) P ( X A / j ) P ( X A ) ,
P A ( s / X ) = j = 1 M P ( j / X ) .
P ( X / j ) = c N i = 1 N p ( x ( i ) / j ) .
P ( X / j ) = c N exp [ i = 1 N ( x ( i ) s ( i , j ) ) 2 / 2 σ 2 ] .
P ( X ) = j = 1 N P ( j ) P ( X / j ) + P ( n ) P ( X / n ) ,
P ( X / n ) = c N exp [ i = 1 N x ( i ) 2 / 2 σ 2 ] .
P ( s / X A ) = L A / ( L A + 1 ) ,
L = j L j for noise field A
L j = ( 1 / M ) exp { [ i s ( i , j ) 2 i 2 x ( i ) s ( i , j ) ] / 2 σ 2 } .
L = H j exp [ i x ( i ) s ( i , j ) / σ 2 ] ,
R = i x ( i ) s ( i ) = σ 2 ln ( L / H ) .
P = 1 C ( x SNR ) C 2 M 2 ( x ) d C ( x ) d x d x ,

Metrics