Abstract

If striate cells had the simple bipartite or tripartite receptive fields (RF’s) classically attributed to them, they should be quite broadly tuned for spatial frequency. Most striate-cortex cells, however, are fairly narrowly tuned and would be expected to have more-periodic RF’s. We have examined this question in recordings of the responses of cat and monkey striate-cortex cells to gratings of increasingly large number of cycles, all centered on the cells’ RF’s. Simple cells narrowly tuned for spatial frequency were found to increase their responses with increasing numbers of stimulus cycles beyond the 1½ cycles expected from the classical RF shape. Broadly tuned simple cells were found to have less-periodic RF’s. Whereas narrowly tuned complex cells were also found to respond maximally to many stimulus cycles, other more broadly tuned complex cells did as well (possibly reflecting summation across many broadly tuned simple cells without regard to phase). A suppressive region was often seen just outside the excitatory two-dimensional spatial-frequency region, at off orientations and/or off spatial frequencies and around the whole RF in space. Most striate cells can thus be described as having periodic RF’s in the space domain such that they fire just to patterns whose local spatial-frequency spectra fall within a compact, restricted, roughly circular two-dimensional spatial-frequency region, with an encircling suppressive region in both the space and the frequency domains.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  2. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).
  3. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [Crossref] [PubMed]
  4. P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).
  5. L. Maffei, A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131–1139 (1976).
    [Crossref] [PubMed]
  6. D. G. Albrecht, “Analysis of Visual Form,” Ph.D. dissertation (University of California, Berkeley, Calif., 1978).
  7. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 544–566.
    [Crossref]
  8. R. W. Andrews, D. A. Pollen, “Relationship between spatial frequency selectivity and receptive field profile of simple cells,” J. Physiol. (London) 287, 163–178 (1979).
  9. J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981).
    [Crossref] [PubMed]
  10. W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
    [PubMed]
  11. K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).
  12. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
    [PubMed]
  13. D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
    [Crossref] [PubMed]
  14. C. D. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. (London) 268, 391–424 (1977).
  15. O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
    [Crossref]
  16. D. Marr, Vision (Freeman, San Francisco, 1982).
  17. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  18. D. A. Pollen, S. F. Ronner, “Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat,” J. Physiol. (London) 245, 667–697 (1975).
  19. J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).
  20. P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).
  21. A. M. Sillito, “The contributions of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat,” J. Physiol. (London) 250, 305–329 (1975).
  22. K. K. De Valois, R. B. H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).
  23. R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
    [Crossref] [PubMed]

1984 (1)

W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
[PubMed]

1983 (1)

K. K. De Valois, R. B. H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).

1982 (2)

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

1981 (1)

J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981).
[Crossref] [PubMed]

1980 (1)

D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
[Crossref] [PubMed]

1979 (2)

K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).

R. W. Andrews, D. A. Pollen, “Relationship between spatial frequency selectivity and receptive field profile of simple cells,” J. Physiol. (London) 287, 163–178 (1979).

1978 (2)

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).

J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).

1977 (1)

C. D. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. (London) 268, 391–424 (1977).

1976 (2)

L. Maffei, A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131–1139 (1976).
[Crossref] [PubMed]

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
[PubMed]

1975 (2)

D. A. Pollen, S. F. Ronner, “Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat,” J. Physiol. (London) 245, 667–697 (1975).

A. M. Sillito, “The contributions of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat,” J. Physiol. (London) 250, 305–329 (1975).

1974 (1)

O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
[Crossref]

1971 (2)

P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).

P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).

1968 (1)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Albrecht, D. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
[Crossref] [PubMed]

D. G. Albrecht, “Analysis of Visual Form,” Ph.D. dissertation (University of California, Berkeley, Calif., 1978).

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 544–566.
[Crossref]

Andrews, R. W.

R. W. Andrews, D. A. Pollen, “Relationship between spatial frequency selectivity and receptive field profile of simple cells,” J. Physiol. (London) 287, 163–178 (1979).

Benevento, L. A.

O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
[Crossref]

Bishop, P. O.

J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981).
[Crossref] [PubMed]

P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).

P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).

Campbell, F. W.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Coombs, J. S.

P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).

Creutzfeldt, O. D.

O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
[Crossref]

De Valois, K. K.

K. K. De Valois, R. B. H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).

K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).

De Valois, R. L.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref] [PubMed]

D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
[Crossref] [PubMed]

K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 544–566.
[Crossref]

Finlay, B. L.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
[PubMed]

Fiorentini, A.

L. Maffei, A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131–1139 (1976).
[Crossref] [PubMed]

Gilbert, C. D.

C. D. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. (London) 268, 391–424 (1977).

Henry, G. H.

P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).

P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).

Hepler, N.

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Jones, J. P.

W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
[PubMed]

Kuhnt, U.

O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
[Crossref]

Kulikowski, J. J.

J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981).
[Crossref] [PubMed]

Maffei, L.

L. Maffei, A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131–1139 (1976).
[Crossref] [PubMed]

Marr, D.

D. Marr, Vision (Freeman, San Francisco, 1982).

Movshon, J. A.

J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).

Mullikin, W. H.

W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
[PubMed]

Palmer, L. A.

W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
[PubMed]

Pollen, D. A.

R. W. Andrews, D. A. Pollen, “Relationship between spatial frequency selectivity and receptive field profile of simple cells,” J. Physiol. (London) 287, 163–178 (1979).

D. A. Pollen, S. F. Ronner, “Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat,” J. Physiol. (London) 245, 667–697 (1975).

Robson, J. G.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Ronner, S. F.

D. A. Pollen, S. F. Ronner, “Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat,” J. Physiol. (London) 245, 667–697 (1975).

Schiller, P. H.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
[PubMed]

Sillito, A. M.

A. M. Sillito, “The contributions of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat,” J. Physiol. (London) 250, 305–329 (1975).

Smith, C. J.

P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).

Thompson, I. D.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).

Thorell, L. G.

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
[Crossref] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 544–566.
[Crossref]

Tolhurst, D. J.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).

J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).

Tolhurst, I. D.

J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).

Tootell, R. B. H.

K. K. De Valois, R. B. H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).

Volman, S. F.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
[PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Yund, E. W.

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref] [PubMed]

K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).

Exp. Brain Res. (2)

J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981).
[Crossref] [PubMed]

O. D. Creutzfeldt, U. Kuhnt, L. A. Benevento, “An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network,” Exp. Brain Res. 21, 251–274 (1974).
[Crossref]

J. Neurophysiol. (2)

W. H. Mullikin, J. P. Jones, L. A. Palmer, “Periodic simple cells in cat area 17,” J. Neurophysiol. 52, 372–387 (1984).
[PubMed]

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1319 (1976).
[PubMed]

J. Physiol. (London) (12)

R. W. Andrews, D. A. Pollen, “Relationship between spatial frequency selectivity and receptive field profile of simple cells,” J. Physiol. (London) 287, 163–178 (1979).

C. D. Gilbert, “Laminar differences in receptive field properties of cells in cat primary visual cortex,” J. Physiol. (London) 268, 391–424 (1977).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

D. A. Pollen, S. F. Ronner, “Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat,” J. Physiol. (London) 245, 667–697 (1975).

J. A. Movshon, I. D. Tolhurst, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).

P. O. Bishop, G. H. Henry, C. J. Smith, “Binocular interaction fields of single units in the cat striate cortex,” J. Physiol. (London) 216, 39–68 (1971).

A. M. Sillito, “The contributions of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat,” J. Physiol. (London) 250, 305–329 (1975).

K. K. De Valois, R. B. H. Tootell, “Spatial-frequency-specific inhibition in cat striate cortex cells,” J. Physiol. (London) 336, 359–376 (1983).

K. K. De Valois, R. L. De Valois, E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” J. Physiol. (London) 291, 483–505 (1979).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex,” J. Physiol. (London) 283, 53–77 (1978).

P. O. Bishop, J. S. Coombs, G. H. Henry, “Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones,” J. Physiol. (London) 219, 625–657 (1971).

Science (1)

D. G. Albrecht, R. L. De Valois, L. G. Thorell, “Visual cortical neurons: are bars or gratings the optimal stimuli?” Science 207, 88–90 (1980).
[Crossref] [PubMed]

Vision Res. (3)

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[Crossref] [PubMed]

L. Maffei, A. Fiorentini, “The unresponsive regions of visual cortical receptive fields,” Vision Res. 16, 1131–1139 (1976).
[Crossref] [PubMed]

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[Crossref] [PubMed]

Other (3)

D. G. Albrecht, “Analysis of Visual Form,” Ph.D. dissertation (University of California, Berkeley, Calif., 1978).

R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Cortical cells: bar and edge detectors, or spatial frequency filters?” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 544–566.
[Crossref]

D. Marr, Vision (Freeman, San Francisco, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Responses of four different cells to grating patterns of various numbers of cycles, all centered on the cells’ RF’s. A and D, Simple cells; B and C, complex cells. Note that the optimum number of cycles varies from A, 1½; to B, 2½; to C, 5½; to D, a full grating (tabulated as 7 cycles). D was the only cell encountered that responded optimally to a full grating.

Fig. 2
Fig. 2

A histogram of the optimum number of cycles for the whole population of 47 simple and complex cells.

Fig. 3
Fig. 3

A plot of the minimum number of cycles versus the spatial-frequency bandwidth for all the simple cells in our sample. The lines are arbitrarily drawn to divide the x axis into aperiodic versus periodic cells and the y axis into narrowly versus broadly tuned cells. It can be seen that, when so divided, the whole population with one exception falls into narrowly tuned periodic cells (bottom right) and broadly tuned aperiodic cells (top left).

Fig. 4
Fig. 4

A plot of the optimum number of cycles versus the spatial-frequency bandwidth for all the complex cells in our sample. When the axes are divided at the same points as in Fig. 3, it can be seen that there are many complex cells that are periodic but broadly tuned, a class not seen among simple cells.

Fig. 5
Fig. 5

Further examples of the responses of individual cells to varying numbers of cycles of gratings centered on their RF’s. All these cells show profound side stopping: Inhibition when the grating patch exceeds a certain optimum number of cycles. A, a complex cell, and B, a simple cell, each show almost no response to a full-field grating. C and D, simple cells, show profound inhibition at intermediate grating-patch sizes, then disinhibition from still more-extensive patterns.

Metrics