Abstract

It is demonstrated that the recent assertion of Yura et al. [ J. Opt. Soc. Am. 73, 500 ( 1983)], to the effect that the Born and Rytov approximations have the same domain of validity, is based on an inappropriate validity condition for the Rytov approximation and hence is erroneous.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Yura, C. C. Sung, S. F. Clifford, R. J. Hill, “Second-order Rytov approximation,”J. Opt. Soc. Am. 73, 500–502 (1983).
    [CrossRef]
  2. J. B. Keller, “Accuracy and validity of the Born and Rytov approximations,”J. Opt. Soc. Am. 59, 1003–1004 (1969).
  3. W. J. Hadden, D. Mintzer, “Test of the Born and Rytov approximations using the Epstein problem,”J. Acoust. Soc. Am. 63, 1279–1286 (1978).
    [CrossRef]
  4. W. P. Brown, “Validity of the Rytov approximation in optical propagation calculations,”J. Opt. Soc. Am. 56, 1045–1052 (1966).
    [CrossRef]
  5. Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
    [CrossRef]

1983 (1)

1978 (1)

W. J. Hadden, D. Mintzer, “Test of the Born and Rytov approximations using the Epstein problem,”J. Acoust. Soc. Am. 63, 1279–1286 (1978).
[CrossRef]

1971 (1)

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

1969 (1)

1966 (1)

Barabanenkov, Yu. N.

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

Brown, W. P.

Clifford, S. F.

Hadden, W. J.

W. J. Hadden, D. Mintzer, “Test of the Born and Rytov approximations using the Epstein problem,”J. Acoust. Soc. Am. 63, 1279–1286 (1978).
[CrossRef]

Hill, R. J.

Keller, J. B.

Kravtsov, Yu. A.

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

Mintzer, D.

W. J. Hadden, D. Mintzer, “Test of the Born and Rytov approximations using the Epstein problem,”J. Acoust. Soc. Am. 63, 1279–1286 (1978).
[CrossRef]

Rytov, S. M.

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

Sung, C. C.

Tatarskii, V. I.

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

Yura, H. T.

J. Acoust. Soc. Am. (1)

W. J. Hadden, D. Mintzer, “Test of the Born and Rytov approximations using the Epstein problem,”J. Acoust. Soc. Am. 63, 1279–1286 (1978).
[CrossRef]

J. Opt. Soc. Am. (3)

Sov. Phys. Usp. (1)

Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, V. I. Tatarskii, “Status of the theory of propagation of waves in a randomly inhomogeneous medium,” Sov. Phys. Usp. 13, 551–575 (1971), p. 555.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u = exp [ i k ( 1 + η ) x ] ,
u = exp ( i k x - ½ 2 k 2 x 2 ) .
½ 2 k 2 x 2 1 ,
u B ( 2 ) = ( 1 - ½ 2 k 2 x 2 ) exp ( i k x ) .

Metrics