Abstract

Spectral sensitivities of the red–green and yellow–blue opponent-color responses were determined under broadband light adaptation for the light-adaptation levels of 5 to 5000 Td. With changing light-adaptation level, the spectral-sensitivity functions of the opponent-color systems change in shape, especially in the short-wavelength region of the spectrum. The light-adaptation effect on the red–green responses can be ascribed to the changes at the cone receptor level, whereas the light-adaptation effect on the yellow–blue responses can be ascribed to the changes at two sites, i.e., at the cone receptor site and at the opponent site.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–402 (1957).
    [CrossRef] [PubMed]
  2. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [CrossRef] [PubMed]
  3. C. R. Ingling, B. H. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [CrossRef] [PubMed]
  4. R. M. Boynton, Human Color Vision (Holt Rinehart & Winston, New York, 1979).
  5. S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic vision,”J. Opt. Soc. Am. 70, 197–212 (1980).
    [CrossRef] [PubMed]
  6. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  7. A. Eisner, D. I. A. MacLeod, “Blue sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–124 (1980).
    [CrossRef] [PubMed]
  8. B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
    [CrossRef] [PubMed]
  9. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. (London) 199, 537–547 (1968).
  10. F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. London 251, 167–195 (1975).
    [PubMed]
  11. F. M. de Monasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
    [CrossRef] [PubMed]
  12. E. Zrenner, P. Gouras, “Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
    [CrossRef] [PubMed]
  13. B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
    [CrossRef] [PubMed]
  14. R. T. Marrocco, “Responses of monkey optic tract fibers to monochromatic lights,” Vision Res. 12, 1167–1175 (1972).
    [CrossRef] [PubMed]
  15. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [CrossRef] [PubMed]
  16. B. R. Wooten, J. S. Werner, “Short-wave cone input to the red-green opponent channel,” Vision Res. 19, 1053–1054 (1979).
    [CrossRef] [PubMed]
  17. F. M. de Monasterio, “Signals from blue cones in ‘red-green’ opponent-color ganglion cells of the macaque retina,” Vision Res. 19, 441–449 (1979).
    [CrossRef]
  18. W. Richards, S. M. Luria, “Color-mixture functions at low luminance levels,” Vision Res. 4, 281–313 (1964).
    [CrossRef] [PubMed]
  19. H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  20. M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
    [CrossRef] [PubMed]
  21. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
    [CrossRef] [PubMed]
  22. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
    [CrossRef]
  23. Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in the opponent-color process,” Vision Res. 24, 1897–1904 (1984).
    [CrossRef]
  24. S. Takahashi, Y. Ejima, “Spatial properties of perceptual red-green and yellow-blue opponent-color processes,” Vision Res. 24, 987–994 (1984).
    [CrossRef]
  25. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  26. T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
    [CrossRef]
  27. In the preliminary experiment, the unique hue loci were determined with an adaptation of 5 to 5000 Td. The spectral loci of the unique green and the unique yellow were invariant with adaptation level, but the spectral loci of the unique blue varied, shifting toward the longer wavelengths with an increase in the light-adaptation level by about 8 nm. This brings about the problem of determining the blue-canceling light. Valberg28 and Burns et al.29 have shown that the loci of the yellow–blue null points determined for various color mixtures are not collinear. So, if the wavelength of the blue-canceling light is varied with light-adaptation level, it is difficult to separate the effect of the variation of the wavelength of blue-canceling light from the effect of the light adaptation. Therefore, we fixed the wavelength of the blue-canceling light for various adaptation levels.
  28. A. Valberg, “A method for the precise determination of achromatic colors including white,” Vision Res. 11, 157–160 (1971).
    [CrossRef] [PubMed]
  29. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).
  30. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent colors theory 1. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
    [CrossRef]
  31. D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951).
  32. L. M. Hurvich, D. Jameson, “A psychophysical study of white. III. Adaptation as variant,”J. Opt. Soc. Am. 41, 787–801 (1951).
    [CrossRef] [PubMed]
  33. C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
    [CrossRef]
  34. J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,”J. Physiol. (London) 298, 501–511 (1980).
  35. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  36. W. Paulus, A. Kröger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
    [CrossRef] [PubMed]
  37. R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,”J. Physiol. 286, 491–507 (1979).
    [PubMed]
  38. D. A. Burkhardt, G. Hassin, “Quantitative relations between color-opponent response of horizontal cells and action spectra of cones,”J. Neurophysiol. 49, 961–975 (1983).
    [PubMed]
  39. V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,”J. Nuerophysiol. 50, 864–878 (1983).
  40. P. W. Trezona, “Rod participation in the ‘blue’ mechanism and its effect on color matching,” Vision Res. 10, 317–332 (1970).
    [CrossRef] [PubMed]
  41. N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
    [CrossRef] [PubMed]
  42. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [CrossRef] [PubMed]
  43. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
    [CrossRef] [PubMed]
  44. This finding may be compatible with the suggestion of Larimer et al.,45 which states that a nonlinear function is approximately linear in S- and M-cone responses and nonlinear only in L-cone response.
  45. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [CrossRef] [PubMed]
  46. E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [CrossRef]
  47. J. D. Mollon, P. G. Polden, “Post-receptoral adaptation,” Vision Res. 19, 435–440 (1979).
    [CrossRef] [PubMed]

1984 (3)

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in the opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

S. Takahashi, Y. Ejima, “Spatial properties of perceptual red-green and yellow-blue opponent-color processes,” Vision Res. 24, 987–994 (1984).
[CrossRef]

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

1983 (6)

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

W. Paulus, A. Kröger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
[CrossRef] [PubMed]

D. A. Burkhardt, G. Hassin, “Quantitative relations between color-opponent response of horizontal cells and action spectra of cones,”J. Neurophysiol. 49, 961–975 (1983).
[PubMed]

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,”J. Nuerophysiol. 50, 864–878 (1983).

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[CrossRef] [PubMed]

1982 (1)

N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
[CrossRef] [PubMed]

1981 (1)

E. Zrenner, P. Gouras, “Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[CrossRef] [PubMed]

1980 (3)

1979 (7)

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon, P. G. Polden, “Post-receptoral adaptation,” Vision Res. 19, 435–440 (1979).
[CrossRef] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red-green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef] [PubMed]

F. M. de Monasterio, “Signals from blue cones in ‘red-green’ opponent-color ganglion cells of the macaque retina,” Vision Res. 19, 441–449 (1979).
[CrossRef]

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,”J. Physiol. 286, 491–507 (1979).
[PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).

1978 (2)

F. M. de Monasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

1977 (2)

C. R. Ingling, B. H. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

1975 (4)

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. London 251, 167–195 (1975).
[PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

1972 (1)

R. T. Marrocco, “Responses of monkey optic tract fibers to monochromatic lights,” Vision Res. 12, 1167–1175 (1972).
[CrossRef] [PubMed]

1971 (3)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

A. Valberg, “A method for the precise determination of achromatic colors including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

1970 (1)

P. W. Trezona, “Rod participation in the ‘blue’ mechanism and its effect on color matching,” Vision Res. 10, 317–332 (1970).
[CrossRef] [PubMed]

1968 (1)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. (London) 199, 537–547 (1968).

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1964 (1)

W. Richards, S. M. Luria, “Color-mixture functions at low luminance levels,” Vision Res. 4, 281–313 (1964).
[CrossRef] [PubMed]

1962 (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef]

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–402 (1957).
[CrossRef] [PubMed]

1955 (1)

1951 (1)

Benimoff, N. I.

N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
[CrossRef] [PubMed]

Benzschawel, T.

Bowmaker, J. K.

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,”J. Physiol. (London) 298, 501–511 (1980).

Boynton, R. M.

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

R. M. Boynton, Human Color Vision (Holt Rinehart & Winston, New York, 1979).

Buchsbaum, G.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Burkhardt, D. A.

D. A. Burkhardt, G. Hassin, “Quantitative relations between color-opponent response of horizontal cells and action spectra of cones,”J. Neurophysiol. 49, 961–975 (1983).
[PubMed]

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).

Cicerone, C. M.

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Cornsweet, T. N.

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef]

Dartnall, H. J. A.

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,”J. Physiol. (London) 298, 501–511 (1980).

de Monasterio, F. M.

F. M. de Monasterio, “Signals from blue cones in ‘red-green’ opponent-color ganglion cells of the macaque retina,” Vision Res. 19, 441–449 (1979).
[CrossRef]

F. M. de Monasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef] [PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. London 251, 167–195 (1975).
[PubMed]

Drum, B.

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[CrossRef] [PubMed]

Eisner, A.

Ejima, Y.

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in the opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

S. Takahashi, Y. Ejima, “Spatial properties of perceptual red-green and yellow-blue opponent-color processes,” Vision Res. 24, 987–994 (1984).
[CrossRef]

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).

Finkelstein, M. A.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

Gottschalk, A.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Gouras, P.

E. Zrenner, P. Gouras, “Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[CrossRef] [PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. London 251, 167–195 (1975).
[PubMed]

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. (London) 199, 537–547 (1968).

Guth, S. L.

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Hassin, G.

D. A. Burkhardt, G. Hassin, “Quantitative relations between color-opponent response of horizontal cells and action spectra of cones,”J. Neurophysiol. 49, 961–975 (1983).
[PubMed]

Hood, D. C.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
[CrossRef] [PubMed]

Hurvich, L. M.

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

C. R. Ingling, B. H. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

Jameson, D.

Judd, D. B.

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951).

Krantz, D. H.

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Kröger-Paulus, A.

W. Paulus, A. Kröger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
[CrossRef] [PubMed]

Larimer, J.

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Lee, B. B.

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,”J. Nuerophysiol. 50, 864–878 (1983).

Luria, S. M.

W. Richards, S. M. Luria, “Color-mixture functions at low luminance levels,” Vision Res. 4, 281–313 (1964).
[CrossRef] [PubMed]

MacLeod, D. I. A.

Marrocco, R. T.

R. T. Marrocco, “Responses of monkey optic tract fibers to monochromatic lights,” Vision Res. 12, 1167–1175 (1972).
[CrossRef] [PubMed]

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

Massof, R. W.

Mollon, J. D.

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon, P. G. Polden, “Post-receptoral adaptation,” Vision Res. 19, 435–440 (1979).
[CrossRef] [PubMed]

Normann, R. A.

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,”J. Physiol. 286, 491–507 (1979).
[PubMed]

Paulus, W.

W. Paulus, A. Kröger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
[CrossRef] [PubMed]

Perlman, I.

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,”J. Physiol. 286, 491–507 (1979).
[PubMed]

Pokorny, J.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Polden, P. G.

J. D. Mollon, P. G. Polden, “Post-receptoral adaptation,” Vision Res. 19, 435–440 (1979).
[CrossRef] [PubMed]

Pugh, E. N.

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

Richards, W.

W. Richards, S. M. Luria, “Color-mixture functions at low luminance levels,” Vision Res. 4, 281–313 (1964).
[CrossRef] [PubMed]

Schneider, S.

N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
[CrossRef] [PubMed]

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “Null coordinates for the opponent color channels,”J. Opt. Soc. Am. 69, 1406 (A) (1979).

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Takahashi, S.

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in the opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

S. Takahashi, Y. Ejima, “Spatial properties of perceptual red-green and yellow-blue opponent-color processes,” Vision Res. 24, 987–994 (1984).
[CrossRef]

Tansley, B. W.

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

Trezona, P. W.

P. W. Trezona, “Rod participation in the ‘blue’ mechanism and its effect on color matching,” Vision Res. 10, 317–332 (1970).
[CrossRef] [PubMed]

Tsou, B. H.

C. R. Ingling, B. H. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

Valberg, A.

A. Valberg, “A method for the precise determination of achromatic colors including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

Virsu, V.

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,”J. Nuerophysiol. 50, 864–878 (1983).

Vos, J. J.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Walraven, P. L.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Werner, J. S.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red-green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wooten, B. R.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red-green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Zrenner, E.

E. Zrenner, P. Gouras, “Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[CrossRef] [PubMed]

Am. J. Psychol. (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef]

J. Neurophysiol. (1)

D. A. Burkhardt, G. Hassin, “Quantitative relations between color-opponent response of horizontal cells and action spectra of cones,”J. Neurophysiol. 49, 961–975 (1983).
[PubMed]

J. Nuerophysiol. (1)

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,”J. Nuerophysiol. 50, 864–878 (1983).

J. Opt. Soc. Am. (6)

J. Physiol. (1)

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,”J. Physiol. 286, 491–507 (1979).
[PubMed]

J. Physiol. (London) (2)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. (London) 199, 537–547 (1968).

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,”J. Physiol. (London) 298, 501–511 (1980).

J. Physiol. London (1)

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. London 251, 167–195 (1975).
[PubMed]

Proc. R. Soc. London Ser. B (1)

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–402 (1957).
[CrossRef] [PubMed]

Science (1)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Vision Res. (26)

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in the opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[CrossRef]

S. Takahashi, Y. Ejima, “Spatial properties of perceptual red-green and yellow-blue opponent-color processes,” Vision Res. 24, 987–994 (1984).
[CrossRef]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

A. Valberg, “A method for the precise determination of achromatic colors including white,” Vision Res. 11, 157–160 (1971).
[CrossRef] [PubMed]

W. Paulus, A. Kröger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
[CrossRef] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity. III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[CrossRef]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

C. R. Ingling, B. H. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

F. M. de Monasterio, “Macular pigmentation and the spectral sensitivity of retinal ganglion cells of macaques,” Vision Res. 18, 1273–1277 (1978).
[CrossRef] [PubMed]

E. Zrenner, P. Gouras, “Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[CrossRef] [PubMed]

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[CrossRef] [PubMed]

R. T. Marrocco, “Responses of monkey optic tract fibers to monochromatic lights,” Vision Res. 12, 1167–1175 (1972).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red-green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef] [PubMed]

F. M. de Monasterio, “Signals from blue cones in ‘red-green’ opponent-color ganglion cells of the macaque retina,” Vision Res. 19, 441–449 (1979).
[CrossRef]

W. Richards, S. M. Luria, “Color-mixture functions at low luminance levels,” Vision Res. 4, 281–313 (1964).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1and π3color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon, P. G. Polden, “Post-receptoral adaptation,” Vision Res. 19, 435–440 (1979).
[CrossRef] [PubMed]

P. W. Trezona, “Rod participation in the ‘blue’ mechanism and its effect on color matching,” Vision Res. 10, 317–332 (1970).
[CrossRef] [PubMed]

N. I. Benimoff, S. Schneider, D. C. Hood, “Interactions between rod and cone channels above threshold: a test of various models,” Vision Res. 22, 1133–1140 (1982).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I: Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Other (5)

This finding may be compatible with the suggestion of Larimer et al.,45 which states that a nonlinear function is approximately linear in S- and M-cone responses and nonlinear only in L-cone response.

R. M. Boynton, Human Color Vision (Holt Rinehart & Winston, New York, 1979).

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951).

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

In the preliminary experiment, the unique hue loci were determined with an adaptation of 5 to 5000 Td. The spectral loci of the unique green and the unique yellow were invariant with adaptation level, but the spectral loci of the unique blue varied, shifting toward the longer wavelengths with an increase in the light-adaptation level by about 8 nm. This brings about the problem of determining the blue-canceling light. Valberg28 and Burns et al.29 have shown that the loci of the yellow–blue null points determined for various color mixtures are not collinear. So, if the wavelength of the blue-canceling light is varied with light-adaptation level, it is difficult to separate the effect of the variation of the wavelength of blue-canceling light from the effect of the light adaptation. Therefore, we fixed the wavelength of the blue-canceling light for various adaptation levels.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Log relative chromatic valence of the r–g (left panel) and y–b (right panel) opponent-color systems for observer YE plotted for an equal-energy spectrum for the six light-adaptation levels. The color temperature of the white background was 8700 K. Symbols denote the level of the light adaptation: ●, 5 Td; ○, 50 Td; △, 158 Td, □, 500 Td; ▲, 1580 Td; and ■, 5000 Td. Error bars signify ±1 SE.

Fig. 2
Fig. 2

Log relative chromatic valence of the r–g (left panel) and y–b (right panel) opponent-color systems for observer MA.

Fig. 3
Fig. 3

Log relative chromatic valence of the r–g (left panel) and y–b (right panel) opponent-color systems for observer YE for the three adaptation levels. The color temperature of the white background was 5200 K. Symbols denote the level of the light adaptation: ●, 5 Td; ○, 50 Td; and □, 500 Td.

Fig. 4
Fig. 4

R–g and y–b opponent-color responses as a function of the wavelength of the test stimulus for different levels of light adaptation. Observer was YE. The data are based on the results shown in Fig. 1. A number in each graph represents the retinal illuminance of the white background.

Fig. 5
Fig. 5

R–g and y–b opponent-color responses as a function of the wavelength of the test stimulus. Observer was MA. The data are based on the results shown in Fig. 2.

Fig. 6
Fig. 6

R–g and y–b opponent-color responses as a function of the wavelength of the test stimulus. The color temperature was 5200 K. The data are based on the results shown in Fig. 3.

Fig. 7
Fig. 7

Relative coefficients of the three cone mechanisms plotted against the level of the light adaptation. Upper panels represent the results for the r–g functions, lower panels the results for the y–b functions. The data are based on the coefficients shown in Tables 1 and 2. The ordinates represent the relative coefficient, which is the normalized maximum coefficient of unity for each cone mechanism.

Tables (2)

Tables Icon

Table 1 Coefficients of Fits of Linear Combinations of Three Cone Receptors: Fit of Linear Model [Eq. (1a)] to R–G Response Function

Tables Icon

Table 2 Coefficients of Fits of Linear Combinations of Three Cone Receptors: Fit of Linear Model [Eq. (1b)] to Y–B Response Function

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r - g = k 1 L + k 2 M + k 3 S ,
y - b = k 4 L + k 5 M + k 6 S ,

Metrics