Abstract

When laser pulses are reflected by targets that have range spreads larger than the transmitted pulse width, the width of the received pulses will be longer than the correlation length of the speckle-induced fluctuations. As a consequence, speckle will cause random small-scale fluctuations within the received pulse that will distort its shape. This phenomenon is called time-resolved speckle. In laser ranging and altimetry, the random pulse distortion caused by time-resolved speckle can seriously degrade the timing accuracy of the receivers. In this paper, we study the statistical properties of time-resolved speckle and the problem of estimating the arrival times of laser pulses in its presence. The maximum-likelihood (ML) estimator of the pulse arrival time is derived, and its performance is evaluated for pulse reflections from flat diffuse targets. The performance of the ML estimator is compared with the performance of several suboptimal estimators. When the signal level is high, speckle noise places a fundamental limit on the accuracy of the suboptimal estimators. It is shown that the ML estimator performs considerably better than the suboptimal estimators and that its accuracy improves as the width of the receiver observation interval increases.

© 1985 Optical Society of America

Full Article  |  PDF Article
Related Articles
Estimating the arrival times of photon-limited laser pulses in the presence of shot and speckle noise

James B. Abshire and Jan F. McGarry
J. Opt. Soc. Am. A 4(6) 1080-1088 (1987)

Estimation of the differential pulse propagation times in two-color laser ranging systems

Kwaifong E. Im and C. S. Gardner
J. Opt. Soc. Am. A 3(1) 143-156 (1986)

Satellite laser ranging using pseudonoise code modulated laser diodes

David M. Norman and Chester S. Gardner
Appl. Opt. 27(17) 3650-3655 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription