Abstract

A motion sequence may be represented as a single pattern in xyt space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human motion mechanisms in which the first stage consists of linear filters that are oriented in space-time and tuned in spatial frequency. The outputs of quadrature pairs of such filters are squared and summed to give a measure of motion energy. These responses are then fed into an opponent stage. Energy models can be built from elements that are consistent with known physiology and psychophysics, and they permit a qualitative understanding of a variety of motion phenomena.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ullman, The Interpretation of Visual Motion (MIT U. Press, Cambridge, Mass., 1979).
  2. S. M. Anstis, “The perception of apparent movement,” Phil. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
    [CrossRef]
  3. S. M. Anstis, “Apparent Movement,” in Handbook of Sensory Physiology, Vol. VIII, Perception, R. Held, H. W. Leibowitz, H.-L. Teuber, eds. (Springer-Verlag, New York, 1977).
  4. J. S. Lappin, H. H. Bell, “Perceptual differentiation of sequential visual patterns,” Percept. Psychophys. 12, 129–134 (1972).
    [CrossRef]
  5. D. Marr, S. Ullman, “Direction selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
    [CrossRef]
  6. J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
    [CrossRef] [PubMed]
  7. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961).
  8. A. B. Watson, A. J. Ahumada, “A look at motion in the frequency domain,”NASA Tech. Memo. TM-84352 (1983).
  9. J. Ross, D. Burr, “The psychophysics of motion,” in Proceedings of the Workshop of Vision, Brain, and Cooperative Computation, M. A. Arbib, A. R. Hanson eds. (U. Massachusetts Press, Amherst, Mass., 1983); Vision, Brain, and Cooperative Computation (Bradford, Amherst, Mass., to be published).
  10. M. J. Morgan, “Perception of continuity in stroboscopic motion: a temporal frequency analysis.” Vision Res 19, 491–500 (1979); “Analogue models of motion perception,” Phil. Trans. R. Soc. London Ser. B 290, 117–135 (1980).
    [CrossRef] [PubMed]
  11. E. H. Adelson, “Some new illusions, and some old ones, analyzed in terms of their Fourier components,” Invest. Opthalmol. Vis. Sci. Suppl. 22, 144 (1982).
  12. E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the Perception of Motion,”J. Opt. Soc. Am. 73, 1861 (1983).
  13. C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,”J. Physiol. London 187, 517–552 (1966).
    [PubMed]
  14. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).
  15. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–566 (1968).
  16. H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–33 (1979).
    [CrossRef] [PubMed]
  17. O. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–529, (1974); “Low-level and high-level processes in apparent motion,” Phil. Trans. R. Soc. London B 290, 137–151 (1980).
    [CrossRef] [PubMed]
  18. J. Hochberg, V. Brooks, “The perception of motion pictures,” in Handbook of Perception, E. C. Carterette, M. Friedmen, eds. (Academic, New York, 1978), Vol. 10.
  19. G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
    [CrossRef]
  20. P. Burt, G. Sperling, “Time, distance, and feature trade-offs in visual apparent motion,” Psych. Rev. 88, 171–195 (1981).
    [CrossRef]
  21. A. J. Pantle, L. Picciano, “A multi-stable movement display: Evidence for two separate motion systems in humans,” Science 193, 500–502 (1976).
    [CrossRef] [PubMed]
  22. D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975).
  23. A. B. Watson, A. Ahumada, J. E. Farrell, “The window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,”NASA Tech. Paper TP-2211 (1983).
  24. D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”J. Physiol. (London) 148, 574–591 (1959).
  25. D. H. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature 257, 674–675 (1975).
    [CrossRef] [PubMed]
  26. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).
  27. A. B. Watson, A. J. Ahumada, “A model of how humans sense image motion,” Invest. Opthalmol. Vis. Sci. Suppl. 25, 14 (1984).
  28. A. Pantle, R. Sekuler, “Contrast response of human visual mechanisms sensitive to orientation and motion.” Vision Res. 9, 397–406 (1969).
    [CrossRef] [PubMed]
  29. J. R. Bergen, H. R. Wilson, “Prediction of flicker sensitivities from temporal three pulse data,” Vision Res. (to be published).
  30. J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,”J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  31. D. H. Kelly, “Motion and vision, II. Stabilized spatio-temporal threshold surface,”J. Opt. Soc. Am. 69, 1340–349 (1979).
    [CrossRef] [PubMed]
  32. T. J. Long, “Why not compatible high-definition television?”IBA Tech. Rev. 21, 4–12 (1983); T. S. Robson, “Extended-definition television service,” Proc. IEE 129, 485–489 (1982).
  33. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  34. P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
    [CrossRef] [PubMed]
  35. D. J. Tolhurst, “Sustained and transient channels in human vision,” Vision Res. 15, 1151–1155 (1975).
    [CrossRef] [PubMed]
  36. E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. London 250, 347–366 (1975).
    [PubMed]
  37. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
    [CrossRef] [PubMed]
  38. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
    [CrossRef] [PubMed]
  39. P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]
  40. S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
    [CrossRef] [PubMed]
  41. S. M. Anstis, Department of Psychology, York University, Toronto, Ontario, Canada (personal communication, 1981).
  42. E. H. Adelson, J. A. Movshon “Phenomenal coherence of moving gratings,” Nature 200, 523–525 (1982).
    [CrossRef]
  43. M. Fahle, T. Poggio, “Visual hyperacuity: spatio-temporal interpolation in human vision,” Proc. R. Soc. London Ser. B 213, 451–477 (1981).
    [CrossRef]

1984 (4)

A. B. Watson, A. J. Ahumada, “A model of how humans sense image motion,” Invest. Opthalmol. Vis. Sci. Suppl. 25, 14 (1984).

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[CrossRef] [PubMed]

1983 (2)

T. J. Long, “Why not compatible high-definition television?”IBA Tech. Rev. 21, 4–12 (1983); T. S. Robson, “Extended-definition television service,” Proc. IEE 129, 485–489 (1982).

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the Perception of Motion,”J. Opt. Soc. Am. 73, 1861 (1983).

1982 (3)

E. H. Adelson, “Some new illusions, and some old ones, analyzed in terms of their Fourier components,” Invest. Opthalmol. Vis. Sci. Suppl. 22, 144 (1982).

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

E. H. Adelson, J. A. Movshon “Phenomenal coherence of moving gratings,” Nature 200, 523–525 (1982).
[CrossRef]

1981 (4)

M. Fahle, T. Poggio, “Visual hyperacuity: spatio-temporal interpolation in human vision,” Proc. R. Soc. London Ser. B 213, 451–477 (1981).
[CrossRef]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

D. Marr, S. Ullman, “Direction selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[CrossRef]

P. Burt, G. Sperling, “Time, distance, and feature trade-offs in visual apparent motion,” Psych. Rev. 88, 171–195 (1981).
[CrossRef]

1980 (2)

S. M. Anstis, “The perception of apparent movement,” Phil. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[CrossRef]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

1979 (3)

D. H. Kelly, “Motion and vision, II. Stabilized spatio-temporal threshold surface,”J. Opt. Soc. Am. 69, 1340–349 (1979).
[CrossRef] [PubMed]

M. J. Morgan, “Perception of continuity in stroboscopic motion: a temporal frequency analysis.” Vision Res 19, 491–500 (1979); “Analogue models of motion perception,” Phil. Trans. R. Soc. London Ser. B 290, 117–135 (1980).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–33 (1979).
[CrossRef] [PubMed]

1978 (2)

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).

1976 (2)

A. J. Pantle, L. Picciano, “A multi-stable movement display: Evidence for two separate motion systems in humans,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

1975 (4)

D. H. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature 257, 674–675 (1975).
[CrossRef] [PubMed]

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

D. J. Tolhurst, “Sustained and transient channels in human vision,” Vision Res. 15, 1151–1155 (1975).
[CrossRef] [PubMed]

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. London 250, 347–366 (1975).
[PubMed]

1974 (1)

O. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–529, (1974); “Low-level and high-level processes in apparent motion,” Phil. Trans. R. Soc. London B 290, 137–151 (1980).
[CrossRef] [PubMed]

1972 (1)

J. S. Lappin, H. H. Bell, “Perceptual differentiation of sequential visual patterns,” Percept. Psychophys. 12, 129–134 (1972).
[CrossRef]

1969 (1)

A. Pantle, R. Sekuler, “Contrast response of human visual mechanisms sensitive to orientation and motion.” Vision Res. 9, 397–406 (1969).
[CrossRef] [PubMed]

1968 (1)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–566 (1968).

1966 (2)

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,”J. Physiol. London 187, 517–552 (1966).
[PubMed]

J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,”J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

1959 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”J. Physiol. (London) 148, 574–591 (1959).

Adelson, E. H.

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the Perception of Motion,”J. Opt. Soc. Am. 73, 1861 (1983).

E. H. Adelson, J. A. Movshon “Phenomenal coherence of moving gratings,” Nature 200, 523–525 (1982).
[CrossRef]

E. H. Adelson, “Some new illusions, and some old ones, analyzed in terms of their Fourier components,” Invest. Opthalmol. Vis. Sci. Suppl. 22, 144 (1982).

Ahumada, A.

A. B. Watson, A. Ahumada, J. E. Farrell, “The window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,”NASA Tech. Paper TP-2211 (1983).

Ahumada, A. J.

A. B. Watson, A. J. Ahumada, “A model of how humans sense image motion,” Invest. Opthalmol. Vis. Sci. Suppl. 25, 14 (1984).

A. B. Watson, A. J. Ahumada, “A look at motion in the frequency domain,”NASA Tech. Memo. TM-84352 (1983).

Anstis, S. M.

S. M. Anstis, “The perception of apparent movement,” Phil. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[CrossRef]

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

S. M. Anstis, “Apparent Movement,” in Handbook of Sensory Physiology, Vol. VIII, Perception, R. Held, H. W. Leibowitz, H.-L. Teuber, eds. (Springer-Verlag, New York, 1977).

S. M. Anstis, Department of Psychology, York University, Toronto, Ontario, Canada (personal communication, 1981).

Bell, H. H.

J. S. Lappin, H. H. Bell, “Perceptual differentiation of sequential visual patterns,” Percept. Psychophys. 12, 129–134 (1972).
[CrossRef]

Bergen, J. R.

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the Perception of Motion,”J. Opt. Soc. Am. 73, 1861 (1983).

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–33 (1979).
[CrossRef] [PubMed]

J. R. Bergen, H. R. Wilson, “Prediction of flicker sensitivities from temporal three pulse data,” Vision Res. (to be published).

Braddick, O.

O. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–529, (1974); “Low-level and high-level processes in apparent motion,” Phil. Trans. R. Soc. London B 290, 137–151 (1980).
[CrossRef] [PubMed]

Brooks, V.

J. Hochberg, V. Brooks, “The perception of motion pictures,” in Handbook of Perception, E. C. Carterette, M. Friedmen, eds. (Academic, New York, 1978), Vol. 10.

Burr, D.

J. Ross, D. Burr, “The psychophysics of motion,” in Proceedings of the Workshop of Vision, Brain, and Cooperative Computation, M. A. Arbib, A. R. Hanson eds. (U. Massachusetts Press, Amherst, Mass., 1983); Vision, Brain, and Cooperative Computation (Bradford, Amherst, Mass., to be published).

Burt, P.

P. Burt, G. Sperling, “Time, distance, and feature trade-offs in visual apparent motion,” Psych. Rev. 88, 171–195 (1981).
[CrossRef]

Campbell, F. W.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–566 (1968).

Enroth-Cugell, C.

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,”J. Physiol. London 187, 517–552 (1966).
[PubMed]

Fahle, M.

M. Fahle, T. Poggio, “Visual hyperacuity: spatio-temporal interpolation in human vision,” Proc. R. Soc. London Ser. B 213, 451–477 (1981).
[CrossRef]

Farrell, J. E.

A. B. Watson, A. Ahumada, J. E. Farrell, “The window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,”NASA Tech. Paper TP-2211 (1983).

Hochberg, J.

J. Hochberg, V. Brooks, “The perception of motion pictures,” in Handbook of Perception, E. C. Carterette, M. Friedmen, eds. (Academic, New York, 1978), Vol. 10.

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”J. Physiol. (London) 148, 574–591 (1959).

Kelly, D. H.

Klein, S. A.

Kronauer, R. E.

Lappin, J. S.

J. S. Lappin, H. H. Bell, “Perceptual differentiation of sequential visual patterns,” Percept. Psychophys. 12, 129–134 (1972).
[CrossRef]

Levinson, E.

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. London 250, 347–366 (1975).
[PubMed]

Long, T. J.

T. J. Long, “Why not compatible high-definition television?”IBA Tech. Rev. 21, 4–12 (1983); T. S. Robson, “Extended-definition television service,” Proc. IEE 129, 485–489 (1982).

Madsen, J. C.

Marr, D.

D. Marr, S. Ullman, “Direction selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[CrossRef]

Morgan, M. J.

M. J. Morgan, “Perception of continuity in stroboscopic motion: a temporal frequency analysis.” Vision Res 19, 491–500 (1979); “Analogue models of motion perception,” Phil. Trans. R. Soc. London Ser. B 290, 117–135 (1980).
[CrossRef] [PubMed]

Movshon, J. A.

E. H. Adelson, J. A. Movshon “Phenomenal coherence of moving gratings,” Nature 200, 523–525 (1982).
[CrossRef]

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).

D. H. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature 257, 674–675 (1975).
[CrossRef] [PubMed]

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Pantle, A.

A. Pantle, R. Sekuler, “Contrast response of human visual mechanisms sensitive to orientation and motion.” Vision Res. 9, 397–406 (1969).
[CrossRef] [PubMed]

Pantle, A. J.

A. J. Pantle, L. Picciano, “A multi-stable movement display: Evidence for two separate motion systems in humans,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Pearson, D. E.

D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975).

Picciano, L.

A. J. Pantle, L. Picciano, “A multi-stable movement display: Evidence for two separate motion systems in humans,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Poggio, T.

M. Fahle, T. Poggio, “Visual hyperacuity: spatio-temporal interpolation in human vision,” Proc. R. Soc. London Ser. B 213, 451–477 (1981).
[CrossRef]

Reichardt, W.

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961).

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–566 (1968).

J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,”J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,”J. Physiol. London 187, 517–552 (1966).
[PubMed]

Rogers, B. J.

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

Ross, J.

J. Ross, D. Burr, “The psychophysics of motion,” in Proceedings of the Workshop of Vision, Brain, and Cooperative Computation, M. A. Arbib, A. R. Hanson eds. (U. Massachusetts Press, Amherst, Mass., 1983); Vision, Brain, and Cooperative Computation (Bradford, Amherst, Mass., to be published).

Sekuler, R.

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. London 250, 347–366 (1975).
[PubMed]

A. Pantle, R. Sekuler, “Contrast response of human visual mechanisms sensitive to orientation and motion.” Vision Res. 9, 397–406 (1969).
[CrossRef] [PubMed]

Sperling, G.

J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
[CrossRef] [PubMed]

P. Burt, G. Sperling, “Time, distance, and feature trade-offs in visual apparent motion,” Psych. Rev. 88, 171–195 (1981).
[CrossRef]

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

Stromeyer, C. F.

Thompson, I. D.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).

Thompson, P.

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Tolhurst, D. H.

D. H. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature 257, 674–675 (1975).
[CrossRef] [PubMed]

Tolhurst, D. J.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).

D. J. Tolhurst, “Sustained and transient channels in human vision,” Vision Res. 15, 1151–1155 (1975).
[CrossRef] [PubMed]

Ullman, S.

D. Marr, S. Ullman, “Direction selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[CrossRef]

S. Ullman, The Interpretation of Visual Motion (MIT U. Press, Cambridge, Mass., 1979).

van Santen, J. P. H.

Watson, A. B.

A. B. Watson, A. J. Ahumada, “A model of how humans sense image motion,” Invest. Opthalmol. Vis. Sci. Suppl. 25, 14 (1984).

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, “A look at motion in the frequency domain,”NASA Tech. Memo. TM-84352 (1983).

A. B. Watson, A. Ahumada, J. E. Farrell, “The window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,”NASA Tech. Paper TP-2211 (1983).

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”J. Physiol. (London) 148, 574–591 (1959).

Wilson, H. R.

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–33 (1979).
[CrossRef] [PubMed]

J. R. Bergen, H. R. Wilson, “Prediction of flicker sensitivities from temporal three pulse data,” Vision Res. (to be published).

Behav. Res. Methods Instrum. (1)

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

IBA Tech. Rev. (1)

T. J. Long, “Why not compatible high-definition television?”IBA Tech. Rev. 21, 4–12 (1983); T. S. Robson, “Extended-definition television service,” Proc. IEE 129, 485–489 (1982).

Invest. Opthalmol. Vis. Sci. Suppl. (2)

A. B. Watson, A. J. Ahumada, “A model of how humans sense image motion,” Invest. Opthalmol. Vis. Sci. Suppl. 25, 14 (1984).

E. H. Adelson, “Some new illusions, and some old ones, analyzed in terms of their Fourier components,” Invest. Opthalmol. Vis. Sci. Suppl. 22, 144 (1982).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (4)

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.”J. Physiol. (London) 283, 79–99 (1978).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–566 (1968).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,”J. Physiol. (London) 148, 574–591 (1959).

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual contex,”J. Physiol. (London) 283, 101–120 (1978).

J. Physiol. London (2)

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,”J. Physiol. London 187, 517–552 (1966).
[PubMed]

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. London 250, 347–366 (1975).
[PubMed]

Nature (2)

D. H. Tolhurst, J. A. Movshon, “Spatial and temporal contrast sensitivity of striate cortical neurons,” Nature 257, 674–675 (1975).
[CrossRef] [PubMed]

E. H. Adelson, J. A. Movshon “Phenomenal coherence of moving gratings,” Nature 200, 523–525 (1982).
[CrossRef]

Percept. Psychophys. (1)

J. S. Lappin, H. H. Bell, “Perceptual differentiation of sequential visual patterns,” Percept. Psychophys. 12, 129–134 (1972).
[CrossRef]

Phil. Trans. R. Soc. London Ser. B (1)

S. M. Anstis, “The perception of apparent movement,” Phil. Trans. R. Soc. London Ser. B 290, 153–168 (1980).
[CrossRef]

Proc. R. Soc. London Ser. B (2)

D. Marr, S. Ullman, “Direction selectivity and its use in early visual processing,” Proc. R. Soc. London Ser. B 211, 151–180 (1981).
[CrossRef]

M. Fahle, T. Poggio, “Visual hyperacuity: spatio-temporal interpolation in human vision,” Proc. R. Soc. London Ser. B 213, 451–477 (1981).
[CrossRef]

Psych. Rev. (1)

P. Burt, G. Sperling, “Time, distance, and feature trade-offs in visual apparent motion,” Psych. Rev. 88, 171–195 (1981).
[CrossRef]

Science (1)

A. J. Pantle, L. Picciano, “A multi-stable movement display: Evidence for two separate motion systems in humans,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Vision Res (1)

M. J. Morgan, “Perception of continuity in stroboscopic motion: a temporal frequency analysis.” Vision Res 19, 491–500 (1979); “Analogue models of motion perception,” Phil. Trans. R. Soc. London Ser. B 290, 117–135 (1980).
[CrossRef] [PubMed]

Vision Res. (9)

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–33 (1979).
[CrossRef] [PubMed]

O. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–529, (1974); “Low-level and high-level processes in apparent motion,” Phil. Trans. R. Soc. London B 290, 137–151 (1980).
[CrossRef] [PubMed]

A. Pantle, R. Sekuler, “Contrast response of human visual mechanisms sensitive to orientation and motion.” Vision Res. 9, 397–406 (1969).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

D. J. Tolhurst, “Sustained and transient channels in human vision,” Vision Res. 15, 1151–1155 (1975).
[CrossRef] [PubMed]

Other (10)

S. M. Anstis, Department of Psychology, York University, Toronto, Ontario, Canada (personal communication, 1981).

J. R. Bergen, H. R. Wilson, “Prediction of flicker sensitivities from temporal three pulse data,” Vision Res. (to be published).

S. Ullman, The Interpretation of Visual Motion (MIT U. Press, Cambridge, Mass., 1979).

S. M. Anstis, “Apparent Movement,” in Handbook of Sensory Physiology, Vol. VIII, Perception, R. Held, H. W. Leibowitz, H.-L. Teuber, eds. (Springer-Verlag, New York, 1977).

J. Hochberg, V. Brooks, “The perception of motion pictures,” in Handbook of Perception, E. C. Carterette, M. Friedmen, eds. (Academic, New York, 1978), Vol. 10.

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961).

A. B. Watson, A. J. Ahumada, “A look at motion in the frequency domain,”NASA Tech. Memo. TM-84352 (1983).

J. Ross, D. Burr, “The psychophysics of motion,” in Proceedings of the Workshop of Vision, Brain, and Cooperative Computation, M. A. Arbib, A. R. Hanson eds. (U. Massachusetts Press, Amherst, Mass., 1983); Vision, Brain, and Cooperative Computation (Bradford, Amherst, Mass., to be published).

D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975).

A. B. Watson, A. Ahumada, J. E. Farrell, “The window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,”NASA Tech. Paper TP-2211 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

a, A sequence of images presented at times t1, t2, and t3 showing a bar moving to the right. b, A sequence of vertical random noise patterns, also shown at three successive instants of time. Motion is seen in each case. The motion percept is simple in a and complex in b, but a motion model should be able to handle both cases.

Fig. 2
Fig. 2

a, A picture of a vertical bar moving to the right. b, A spatiotemporal picture of the same stimulus. Time forms the third dimension. c, A spatiotemporal picture of a moving bar sampled in time (i.e., a movie).

Fig. 3
Fig. 3

a, An (x, t) plot of a bar moving to the right over time. Time proceeds downward. The vertical dimension is not shown. b, An (x, t) plot of the same bar, sampled in time. c, The sampled motion as displayed in a movie in which each frame remains on until the next one appears. d, Continuous motion after spatiotemporal blurring. e, Sampled motion after spatiotemporal blurring. The middle- and low-frequency information is almost the same for the two stimuli.

Fig. 4
Fig. 4

(x, t) plots of moving bars. a, A movie of a bar moving to the right. b, A bar moving to the right continuously. c, The difference (sampling artifacts) between the sampled and continuous motions. d, A movie sampled at a high frame rate. e, Continuous motion. f, The difference between the finely sampled and continuous motion. When the sampling rate is high, the sampling artifacts become difficult or impossible to see.

Fig. 5
Fig. 5

a–e, (x, t) plots of bars moving to the left or to the right at various speeds. f, Motion is like orientation in (x, t), and a spatiotemporally oriented receptive field can be used to detect it. g, The same oriented receptive field can respond to sampled motion just as it responds to continuous motion.

Fig. 6
Fig. 6

A spatiotemporally separable impulse response. The spatial and temporal impulse responses are shown along the margins. Their product is shown schematically in the center. The spatiotemporal impulse response is a weighting function that sums inputs at various positions and times to determine the present output.

Fig. 7
Fig. 7

One may think of a spatiotemporal impulse response as being fixed, while the spatiotemporal stimulus slides beneath it as if pulled along on a strip. At any moment, the integral of the pointwise product of the two functions determines the output; i.e., the two functions are convolved in time (the impulse response is time reversed here; otherwise the operation would be a correlation). This particular unit will respond strongly when the motion lies within its receptive field but will not respond to blank areas or areas without motion.

Fig. 8
Fig. 8

a, An (x, t) plot of an edge that is stationary, then moves sinusoidally, and then is stationary again. b, A separable spatiotemporal impulse response, magnified four times for clarity. c, The convolution of a and b, i,e., the output of a separable channel. There is no selectivity for direction of motion. d The stimulus again. e, A spatiotemporally oriented Gabor function, magnified four times. f, The convolution of d and e. The output is strongly selective for rightward motion.

Fig. 9
Fig. 9

a, Two linear filters, whose responses are 90 deg out of phase, form a quadrature pair. If their responses are squared and summed, the resulting signal gives a phase-independent measure of local motion energy (within a given spatial-frequency band). The filters shown here resemble spatiotemporally oriented Gabor functions. To approximate such functions, a number of separable filters b–e, which are shifted in phase and time, can be summed to form f.

Fig. 10
Fig. 10

A method for constructing spatiotemporally oriented impulse responses from pairs of separable ones, following Watson and Ahumada.8 Two spatial and two temporal impulse responses are shown in a and b. The four spatiotemporal impulse responses shown across the top of c are the products of two spatial and two temporal impulse responses. The ones across the bottom are sums and differences of those above. The result is a pair of leftward- and a pair of rightward-selective filters. Members of a pair are approximately in quadrature.

Fig. 11
Fig. 11

The spatiotemporal energy spectrum of a direction-selective filter built as the sum of two separable filters.

Fig. 12
Fig. 12

A spatiotemporal-frequency plot showing the sensitivities of rightward (R), leftward (L), and stationary (S) units. Similar units are presumed to cover the entire visible region of the spatiotemporal spectrum (the bounds of which are shown by the dashed line).

Fig. 13
Fig. 13

The time courses of the responses of various stages to a light or a dark bar, moving to the left or to the right. Responses are shown for idealized filters to make the qualitative differences clear. The separable linear stage responds to both polarities and both directions of motion. The spatiotemporally oriented linear stage responds only to rightward motion; the response oscillates and depends on the polarity of the bar. The spatiotemporally oriented energy stage responds to rightward motion only and gives the same positive response regardless of bar polarity. The opponent-energy stage gives a positive response to rightward motion and a negative response to leftward motion, regardless of bar polarity.

Fig. 14
Fig. 14

The overlapping response curves of three motion units plotted as a function of velocity. Any single unit’s response is a function of both the velocity and the contrast of a stimulus. However, the relative responses of the various units can be used to compute a measure of velocity that is invariant with contrast.

Fig. 15
Fig. 15

a, An (x, t) plot of a stimulus consisting of a moving light–dark edge. b, The response of a rightward-energy unit. c, A leftward-energy unit. d, An opponent-energy unit; e, A static unit. f, An (x, t) plot of a movie of the stimulus shown in a. g–j, The responses of units selective for rightward energy, leftward energy, opponent energy, and static energy, respectively.

Fig. 16
Fig. 16

a, An (x, t) plot of a random bar pattern, moving to the right in steps. b The reverse-phi version: The pattern moves to the right and the bars reverse polarity on each step. c, The response of an opponent-energy channel to normal motion. The response is mainly positive, signaling rightward motion. d, The response of the channel to the reverse-phi display. Now the response is mainly negative, signaling leftward motion.

Fig. 17
Fig. 17

a, An (x, t) plot of a square wave’s motion. b, A (x, t) plot of a fluted square wave’s motion. c, The response of a medium spatial-frequency opponent-motion channel when stimulated by the square wave. Rightward motion (bright) is signaled. d, The response of the same channel when stimulated by the fluted square wave. Leftward motion (dark) is signaled.

Fig. 18
Fig. 18

(a) A version of the Reichardt model that is formally equivalent to a version of an energy model. The visual input I(x, t) passes the two spatial impulse responses f1(x) and f2(x). Following van Santen and Sperling,6 these functions can be bandpass, differing in phase. or in position. Each output passes through the two temporal functions h1(t) and h2(t), where h2(t) is more low passed or more delayed than h1(t). The four separable responses are labeled A, A′, B, and B′. The products AB′ and BA′ are generated, and their difference constitutes the final output. (b) An equivalent spatiotemporal energy model. The same spatial and temporal filters are used. Sums and differences generate directionally selective filters. Sums of squares of quadrature pairs give motion energy for each direction. The difference between the rightward and leftward signals gives the final output. This turns out to be identical with the output of the Reichardt model. The equivalence holds only for energy models that are based on sums of separable filter pairs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = ( k t ) n exp ( - k t ) [ 1 / n ! - ( k t ) 2 / ( n + 2 ) ! ] ,
A ( t ) = h 1 ( t ) * [ I ( x , t ) · f 1 ( x ) ] ,

Metrics