Abstract

A new apparatus for in vivo retinal-scattering experiments incorporating Mueller-matrix ellipsometry is described. The basic principle is that the state of polarization of the entrance beam is modulated, after which the Stokes vector of the exit beam is assessed. Results show that nearly 90% of the degree of polarization of the entrance beam is preserved after double passage of the ocular media and retinal scattering. Changes in the state of polarization are studied in terms of a rotation around an eigenvector on the Poincaré sphere. These studies show that the type of change in the state of polarization of the totally polarized component is probably caused by a linearly birefringent process.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Brindley, E. N. Willmer, “The reflexion of light from the macular and peripheral fundus oculi in man,”J. Physiol. (London) 116, 350–356 (1951).
  2. R. A. Weale, “Polarized light and the human fundus oculi,”J. Physiol. (London) 186, 175–186 (1966).
  3. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,”J. Physiol. (London) 186, 558–578 (1966).
  4. R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
    [CrossRef]
  5. M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–42 (1972).
  6. A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
    [CrossRef] [PubMed]
  7. W. T. Cope, M. L. Wolbarsht, B. S. Yamanashi, “The corneal polarization cross,”J. Opt. Soc. Am. 68, 1139–1141 (1978).
    [CrossRef] [PubMed]
  8. B. F. Hochheimer, H. E. Kues, “Retinal polarization effects,” Appl. Opt. 21, 3811–3818 (1982).
    [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).
  10. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,”J. Opt. Soc. Am. 68, 1519–1528 (1978).
    [CrossRef]

1982 (1)

1978 (2)

1972 (1)

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–42 (1972).

1969 (1)

R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[CrossRef]

1966 (2)

R. A. Weale, “Polarized light and the human fundus oculi,”J. Physiol. (London) 186, 175–186 (1966).

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,”J. Physiol. (London) 186, 558–578 (1966).

1951 (1)

G. S. Brindley, E. N. Willmer, “The reflexion of light from the macular and peripheral fundus oculi in man,”J. Physiol. (London) 116, 350–356 (1951).

1950 (1)

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Aberl, M.

R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Brindley, G. S.

G. S. Brindley, E. N. Willmer, “The reflexion of light from the macular and peripheral fundus oculi in man,”J. Physiol. (London) 116, 350–356 (1951).

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,”J. Physiol. (London) 186, 558–578 (1966).

Cope, W. T.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,”J. Physiol. (London) 186, 558–578 (1966).

Hauge, P. S.

Hochheimer, B. F.

Kues, H. E.

Miller, U.

R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[CrossRef]

Millodot, M.

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–42 (1972).

Naylor, E. J.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Roehler, R.

R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[CrossRef]

Stanworth, A.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Polarized light and the human fundus oculi,”J. Physiol. (London) 186, 175–186 (1966).

Willmer, E. N.

G. S. Brindley, E. N. Willmer, “The reflexion of light from the macular and peripheral fundus oculi in man,”J. Physiol. (London) 116, 350–356 (1951).

Wolbarsht, M. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Yamanashi, B. S.

Appl. Opt. (1)

Atti Fond. Giorgio Ronchi (1)

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–42 (1972).

Br. J. Ophthalmol. (1)

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (London) (3)

G. S. Brindley, E. N. Willmer, “The reflexion of light from the macular and peripheral fundus oculi in man,”J. Physiol. (London) 116, 350–356 (1951).

R. A. Weale, “Polarized light and the human fundus oculi,”J. Physiol. (London) 186, 175–186 (1966).

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,”J. Physiol. (London) 186, 558–578 (1966).

Vision Res. (1)

R. Roehler, U. Miller, M. Aberl, “Zur Messung der Modulationsuebertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht,” Vision Res. 9, 407–427 (1969).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Representation on a Poincaré sphere of the state of polarization of a (quasi-) monochromatic light beam. The linearly polarized states are located on the equator; the longitude indicates the direction of the polarization plane. The upper hemisphere contains the left-handed polarization states, the lower one the right-handed states. The ellipticity increases with increasing lattitude. The north and south poles represent the circularly polarized states. On the sphere the positions of the Stokes vectors and the totally polarized parts of their measured transforms are displayed. Also displayed are the best-fitting eigenvector E and the rotation. Subject GB, left eye, central position of the entrance and exit pupils, wavelength 514 nm, retinal illuminance 5.3 log Td.

Fig. 2
Fig. 2

Schematic of the optical system for measuring the polarization properties of the fundus, incorporating a MM ellipsometer. The entrance light path consisted of the following elements: L, ion laser; BE, beam expander and Gaussian spatial filter; Drf, diaphragm selecting the radiated field on the retina; S, shutter; P, polarizer C1, rotating compensator; Lin, entrance lens that focuses the laser beam in the pupil plane of the eye; M, half-mirror to separate the entrance and exit lights. Exit light path: Lout, exit lens with its back focus in the pupil plane; Dmf, diaphragm that defines the measured retinal field; Dpupil, diaphragm to define the position of the exit pupil; C1, rotating compensator; A, analyzer, which is parallel to the polarizer in the entrance light beam. PMT, photomultiplier tube. Also shown is a sketch of the pupil plane with the positions of the entrance and exit pupils. The entrance pupil is formed by a focused laser beam and is situated 1.5 mm below the horizontal meridian. The diameter of the exit pupil is 1.2 mm.

Fig. 3
Fig. 3

Typical output of the photomultiplier tube as a function of the position of compensators C1 and C2. The points represent the 96 data points, which are measured in a random order. The curve is synthesized from the first 12 Fourier coefficients.

Tables (1)

Tables Icon

Table 1 Properties of a Light Beam That has Double-Passed the Ocular Media and Has Scattered at the Foveal Part of the Retinaa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S out = MM × S in .
I ( θ ) = A O + n = 1 12 ( A n cos 2 n θ + B n sin 2 n θ ) .
P = ( S 1 2 + S 2 2 + S 3 2 ) 1 / 2 / S 0.
S d = { S 0 - ( S 1 2 + S 2 2 + S 3 2 ) 1 / 2 , 0 , 0 , 0 } S p = { S 0 - S d 0 , S 1 , S 2 , S 3 } .

Metrics