Abstract

We studied the optical performance of a reflective wire-grid polarizer designed for visible light. The polarizer reflects E polarization and transmits H polarization with low losses. The studies of transmission and reflectivity of nonpolarized and polarized light from single grids and stacked grids show that the optical performance of wire-grid polarizers can be adequately described by representing the polarizer as an effective uniaxial medium with anisotropic absorption. The description facilitates the incorporation of the polarizers in modeling procedures widely used in the design of liquid-crystal devices. We present the modeling and measurement results of twisted-nematic devices with wire-grid polarizers serving simultaneously as reflective polarizers, alignment layers, and back electrodes. The application of wire-grid polarizers for reflective liquid-crystal devices provides brightness enhancement, high contrast ratio at wide viewing angles, and elimination of viewing parallax.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980).
  2. Electrodynamics of Antennae With Semitransparent Surfaces, B. Z. Katzenelenbaum, A. N. Sivov, eds. (Science, Moscow, 1989).
  3. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  4. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  5. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983).
    [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28, 1–14 (1982).
    [CrossRef]
  7. P. Yeh, A. Yariv, C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–448 (1977).
    [CrossRef]
  8. P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
    [CrossRef]
  9. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1027 (1967).
    [CrossRef] [PubMed]
  10. P. K. Cheo, C. D. Bass, “Efficient wire-grid duplexer polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
    [CrossRef]
  11. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  12. M. G. Moharam, T. K. Gaylord, “Rigorous coupeld-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  13. R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
    [CrossRef]
  14. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  15. D. W. Berremann, “Optics in stratified and anisotropic media: 4×4 matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  16. S. Yu. Karpov, S. N. Stolyarov, “Propagation and transformation of electromagnetic waves in one-dimensional periodic structures,” Phys. Usp. 36, 1–22 (1993).
    [CrossRef]
  17. P. Yeh, “Generalized model for wire-grid polarizers,” in Polarizers and Applications, G. B. Trapani, ed. Proc. SPIE307, 13–21 (1981).
    [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964).
  19. R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).
  20. E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
    [CrossRef]
  21. A. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
    [CrossRef] [PubMed]
  22. D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminum” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985) 369–408.
  23. Liquid Crystals: Applications and Uses, B. Bahadur, ed. (World Scientific, Singapore, 1991).

1995

R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
[CrossRef]

A. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
[CrossRef] [PubMed]

1993

S. Yu. Karpov, S. N. Stolyarov, “Propagation and transformation of electromagnetic waves in one-dimensional periodic structures,” Phys. Usp. 36, 1–22 (1993).
[CrossRef]

1986

1983

1982

M. G. Moharam, T. K. Gaylord, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28, 1–14 (1982).
[CrossRef]

1981

1980

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

1978

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

1977

1972

1971

P. K. Cheo, C. D. Bass, “Efficient wire-grid duplexer polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

1967

1960

Auton, J. P.

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bass, C. D.

P. K. Cheo, C. D. Bass, “Efficient wire-grid duplexer polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

Berremann, D. W.

Bird, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964).

Cheo, P. K.

P. K. Cheo, C. D. Bass, “Efficient wire-grid duplexer polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

Gardner, E.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Gaylord, T. K.

Hansen, D.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Herke, R.

R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
[CrossRef]

Hong, C.-S.

Inokuti, M.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminum” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985) 369–408.

Jamal, S. H.

R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
[CrossRef]

Karpov, S. Yu.

S. Yu. Karpov, S. N. Stolyarov, “Propagation and transformation of electromagnetic waves in one-dimensional periodic structures,” Phys. Usp. 36, 1–22 (1993).
[CrossRef]

Kelly, J.

R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
[CrossRef]

Moharam, M. G.

Parrish, M.

Perkins, R.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Rakic, A.

Robbins, A.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Sasaki, T.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Shiles, E.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminum” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985) 369–408.

Smith, D. Y.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminum” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985) 369–408.

Stolyarov, S. N.

S. Yu. Karpov, S. N. Stolyarov, “Propagation and transformation of electromagnetic waves in one-dimensional periodic structures,” Phys. Usp. 36, 1–22 (1993).
[CrossRef]

Thorne, J.

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964).

Yariv, A.

Yeh, P.

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

P. Yeh, A. Yariv, C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–448 (1977).
[CrossRef]

P. Yeh, “Generalized model for wire-grid polarizers,” in Polarizers and Applications, G. B. Trapani, ed. Proc. SPIE307, 13–21 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. G. Moharam, T. K. Gaylord, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28, 1–14 (1982).
[CrossRef]

Appl. Phys. Lett.

P. K. Cheo, C. D. Bass, “Efficient wire-grid duplexer polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Soc. Inf. Disp.

R. Herke, S. H. Jamal, J. Kelly, “Improved representation of polarizers for LCD modeling,” J. Soc. Inf. Disp. 3, 9–14 (1995).
[CrossRef]

Opt. Commun.

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

Phys. Rev. B

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Phys. Usp.

S. Yu. Karpov, S. N. Stolyarov, “Propagation and transformation of electromagnetic waves in one-dimensional periodic structures,” Phys. Usp. 36, 1–22 (1993).
[CrossRef]

Other

P. Yeh, “Generalized model for wire-grid polarizers,” in Polarizers and Applications, G. B. Trapani, ed. Proc. SPIE307, 13–21 (1981).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964).

R. Perkins, D. Hansen, E. Gardner, J. Thorne, A. Robbins, “Broadband wire grid polarizer for the visible spectrum” U.S. patent6,122,103 (19September2000).

Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Electrodynamics of Antennae With Semitransparent Surfaces, B. Z. Katzenelenbaum, A. N. Sivov, eds. (Science, Moscow, 1989).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

D. Y. Smith, E. Shiles, M. Inokuti, “The optical properties of metallic aluminum” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985) 369–408.

Liquid Crystals: Applications and Uses, B. Bahadur, ed. (World Scientific, Singapore, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for measurements of (a) transmission and (b) reflectivity of polarized light from a single grid.

Fig. 2
Fig. 2

Measured reflection and transmission spectra of single grid (s-polarization). (a) and (b), polarization of testing light is parallel to the grid; (c) and (d), polarization of testing light is perpendicular to the grid.

Fig. 3
Fig. 3

Measured reflection and transmission spectra of single grid (p-polarization). (a) and (b) plane of incidence is perpendicular to the grid; (c) and (d) plane of incidence is parallel to the grid.

Fig. 4
Fig. 4

Modeled reflection and transmission spectra of single grid (s-polarization). (a) and (b) polarization of testing light is parallel to the grid; (c) and (d) polarization of testing light is perpendicular to the grid.

Fig. 5
Fig. 5

Experimental setup for measurements of transmission (a) and reflectivity (b) of nonpolarized light from grid stacks.

Fig. 6
Fig. 6

Measured stacks of two grid polarizers with the grids (a) and (b) in air and (c) and (d) in optically dense glycerin.

Fig. 7
Fig. 7

Measured [(a)] and modeled [(b)] percent transmission of blue light by a stack of two crossed grids with the grids facing air.

Fig. 8
Fig. 8

Measured [(a)] and modeled [(b)] percent transmission of spectral white light by a stack of two crossed grids with the grids facing air.

Fig. 9
Fig. 9

Measured [(a)] and modeled [(b)] percent transmission of spectral white light by a stack of two parallel grids with the grids facing air.

Fig. 10
Fig. 10

Measured [(a)] and modeled [(b)] percent reflection of spectral white light by a stack of two crossed grids with the grids facing air.

Fig. 11
Fig. 11

Measured [(a)] and modeled [(b)] isocontrast curves for TN normally white reflective device with grid polarizer on back, operated between 0 and 6 V.

Fig. 12
Fig. 12

Measured [(a)] and modeled [(b)] isocontrast curves for TN normally white transmissive device with grid polarizer on back, operated between 0 and 6 V.

Tables (2)

Tables Icon

Table 1 Indices of Refraction and Absorption for a Uniaxial Birefringent Mediuma with Anisotropic Absorption Used in Modeling of Wire-Grid Polarizer in Air

Tables Icon

Table 2 Indices of Refraction and Absorption for a Uniaxial Birefringent Mediuma with Anisotropic Absorption Used in Modeling of Wire-Grid Polarizer in Glycerin

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

no2=aΛn12+bΛn22,
1ne2=aΛ 1n12+bΛ 1n22,

Metrics