Abstract

A high-resolution retinal imaging camera is described that uses a Shack–Hartmann wave-front sensor and a Fourier deconvolution imaging technique. The operation of the camera is discussed in detail and high-resolution retinal images of the human cone mosaic are shown for a retinal patch approximately 10 arc min in diameter from two different retinal locations. The center-to-center cone spacing is shown to be ∼2.5 µm for the retinal images recorded at 2° temporal from the central fovea and ∼4 µm for the retinal images recorded at 3° temporal from the central fovea.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  2. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” J. Opt. Soc. Am. A 18, 631–643 (2001).
  3. J. Primot, G. Rousset, J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensat-ing turbulence degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990).
    [CrossRef]
  4. I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
    [CrossRef]
  5. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 283–368.
  6. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69, 972–977 (1979).
    [CrossRef]
  7. W. H. Southwell, “Wave-front estimation from wavefront slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).
    [CrossRef]
  8. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1991), pp. 464–472.
  9. J. J. Yellot, “Spectral analysis of spatial sampling of photoreceptors: topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
    [CrossRef]
  10. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  11. S. Marcos, R. Navarro, A. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
    [CrossRef]
  12. Y. Le Grand, S. G. Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).
  13. N. D. Drasco, C. W. Fowler, “Non-linear projection of a retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol. 58, 709–714 (1974).
    [CrossRef]
  14. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
    [CrossRef]
  15. J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).
  16. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]

2001

J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” J. Opt. Soc. Am. A 18, 631–643 (2001).

2000

1999

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

1997

1996

S. Marcos, R. Navarro, A. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

1992

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

1990

1982

J. J. Yellot, “Spectral analysis of spatial sampling of photoreceptors: topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

1980

1979

1974

N. D. Drasco, C. W. Fowler, “Non-linear projection of a retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol. 58, 709–714 (1974).
[CrossRef]

Artal, A.

Artal, P.

Chen, L.

Cubalchini, R.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

Drasco, N. D.

N. D. Drasco, C. W. Fowler, “Non-linear projection of a retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol. 58, 709–714 (1974).
[CrossRef]

Fontanella, J. C.

Fowler, C. W.

N. D. Drasco, C. W. Fowler, “Non-linear projection of a retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol. 58, 709–714 (1974).
[CrossRef]

Glanc, M.

J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).

Hage, S. G.

Y. Le Grand, S. G. Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

Hofer, H.

Iglesias, I.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

Le Gargasson, J.-F.

J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).

Le Grand, Y.

Y. Le Grand, S. G. Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).

Lena, P.

J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).

Liang, J.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1991), pp. 464–472.

Marcos, S.

Miller, D. T.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Navarro, R.

Primot, J.

Roddier, F.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 283–368.

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Rousset, G.

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

Southwell, W. H.

Williams, D. R.

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” J. Opt. Soc. Am. A 18, 631–643 (2001).

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Yamauchi, Y.

Yellot, J. J.

J. J. Yellot, “Spectral analysis of spatial sampling of photoreceptors: topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

Yoon, G. Y.

Br. J. Ophthalmol.

N. D. Drasco, C. W. Fowler, “Non-linear projection of a retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol. 58, 709–714 (1974).
[CrossRef]

C. R. Acad. Sci. (Paris) Ser. IV

J.-F. Le Gargasson, M. Glanc, P. Lena, “retinal imaging with adaptive optics,” C. R. Acad. Sci. (Paris) Ser. IV t.2, 1131–1138 (2001).

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Opt. Lett.

Vision Res.

J. J. Yellot, “Spectral analysis of spatial sampling of photoreceptors: topological disorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Other

Y. Le Grand, S. G. Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 283–368.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1991), pp. 464–472.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the high-resolution retinal imaging camera.

Fig. 2
Fig. 2

(a) Shack–Hartmann spot pattern for the first recorded wave-front aberration of subject 1’s left eye ( 320 × 240   pixels ) , (b) reconstructed wave front across a 6-mm pupil, where the contour spacing is 0.3 µm, and (c) the associated point-spread function (both 256 × 256   pixels).

Fig. 3
Fig. 3

(a) First recorded retinal image of subject 1’s left eye, 320 × 240   pixels ; (b) the image, removed from the background; the image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter.

Fig. 4
Fig. 4

Fourier deconvolved retinal images, from location 2° temporal. Image (a) was obtained after 10 realizations of the series of images and wave-front aberration point-spread functions. Image (b) was obtained after 20 realizations of the series of images and wave-front aberration point-spread functions. Image (c) was obtained from the full 30 realizations of the series of images and wave-front aberration point-spread functions. Each image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter.

Fig. 5
Fig. 5

(a) Average power spectrum for realizations 20 to 30 of the Fourier deconvolved retinal images. To enhance the higher frequencies, the power spectrum is expressed in a logarithmic scale. The image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter. (b) Horizontal cross section of the power spectrum (an intensity profile), showing the center-to-center cone spacing to be ∼120 cycles per degree.

Fig. 6
Fig. 6

(a) First degraded retinal image recorded at the 3° temporal location; this image is 320 × 240   pixels . (b) Retinal patch removed from the background; this image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter. (c) The first recorded wave-front aberration for this location and (d) the associated point-spread function (both 256 × 256   pixels). The pupil diameter is 6 mm.

Fig. 7
Fig. 7

Fourier deconvolved retinal images, from location 3° temporal. Image (a) was obtained after 10 realizations, image (b) was obtained after 20 realizations, and image (c) was obtained from the full 30 realizations of the series of images and wave-front aberration point-spread functions. Each image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter.

Fig. 8
Fig. 8

(a) Average power spectrum for realizations 20 to 30 of the Fourier deconvolved retinal images. To enhance the higher frequencies the power spectrum is expressed in a logarithmic scale. The image is 144 × 144   pixels and represents a retinal patch approximately 10 arc min in diameter. (b) Horizontal cross section of the power spectrum (intensity profile), showing the center-to-center cone spacing to be ∼50 cycles/deg.

Tables (1)

Tables Icon

Table 1 Variation in the Value of the Zernike Coefficients during the Acquisition of the Data Set

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

object = FT - 1 I i P i * P i P i * ,
P i = exp ( i Ψ ) * exp ( i Ψ ) .
| I | 2 = 1 N k = 1 N | FT ( image k ) | 2 .

Metrics