Y. Tsuchiya, “Photon path distribution and optical
responses of turbid media: theoretical analysis based on the microscopic
Beer–Lambert law,” Phys. Med.
Biol. 46, 2067–2084
(2001).

[CrossRef]
[PubMed]

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

H. Zhang, Y. Tsuchiya, “Applicability of time integrated
spectroscopy based on the microscopic Beer–Lambert law to finite turbid
media with curved boundaries,” Opt. Rev. 7, 473–478
(2000).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

A. M. Gandjbakhche, X. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for
quantitative imaging in time-resolved transillumination
experiments,” Appl. Opt. 37, 1973–1981
(1998).

[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

Y. Tsuchiya, T. Urakami, “Quantitation of absorbing substances in
turbid media such as human tissues based on the microscopic Beer–Lambert
law,” Opt. Commun. 144, 269–280
(1997).

[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult
head,” Appl. Opt. 36, 21–31
(1997).

[CrossRef]
[PubMed]

Y. Tsuchiya, T. Urakami, “Frequency domain analysis of photon
migration based on the microscopic Beer–Lambert
Law,” Jpn. J. Appl. Phys. 35, 4848–4851
(1996).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological
medium having various shapes,” Jpn. J. Appl.
Phys. 34, L79–L81
(1995).

[CrossRef]

Y. Tsuchiya, K. Ohta, T. Urakami, “Isotropic photon injection for noninvasive
tissue spectroscopy,” Jpn. J. Appl. Phys. 34, 2495–2501
(1995).

[CrossRef]

S. R. Arridge, “Photon-measurement density functions Part I:
analytical forms,” Appl. Opt. 34, 7395–7409
(1995).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

J. C. Schotland, J. C. Haselgrove, J. S. Leigh, “Photon hitting
density,” Appl. Opt. 32, 448–453
(1993).

[CrossRef]
[PubMed]

R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid
biological media,” J. Opt. Soc. Am. A 4, 423–432
(1987).

[CrossRef]
[PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for
light in tissue by a Monte Carlo method,” Adv.
Exp. Med. Biol. 215, 179–192
(1987).

[CrossRef]
[PubMed]

B. C. Wilson, G. Adam, “Monte Carlo model for the absorption and
flux distributions of light in tissue,” Med.
Phys. 10, 824–830
(1983).

[CrossRef]
[PubMed]

F. F. Jöbsis, “Noninvasive infrared monitoring of cerebral
and myocardial oxygen sufficiency and circulatory
parameters,” Science 198, 1264–1267
(1977).

[CrossRef]

B. C. Wilson, G. Adam, “Monte Carlo model for the absorption and
flux distributions of light in tissue,” Med.
Phys. 10, 824–830
(1983).

[CrossRef]
[PubMed]

H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense
scattering media: derivation and evaluation of imaging
operators,” in Medical Optical Tomography: Functional
Imaging and Monitoring, Vol. IS11 of SPIE
International Series (SPIE,
Bellingham, Wash., 1993), pp.
121–143.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult
head,” Appl. Opt. 36, 21–31
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, “Photon-measurement density functions Part I:
analytical forms,” Appl. Opt. 34, 7395–7409
(1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “Application of finite element method for the
forward model in infra-red absorption imaging,” in
Mathematical Methods in Medical Imaging, D. C. Wilson, J. N. Wilson, eds., Proc. SPIE1768, 97–108
(1992).

[CrossRef]

H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense
scattering media: derivation and evaluation of imaging
operators,” in Medical Optical Tomography: Functional
Imaging and Monitoring, Vol. IS11 of SPIE
International Series (SPIE,
Bellingham, Wash., 1993), pp.
121–143.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance
for the non-invasive measurement of tissue optical
properties,” Appl. Opt. 28, 2331–2336
(1989).

[CrossRef]
[PubMed]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense
scattering media: derivation and evaluation of imaging
operators,” in Medical Optical Tomography: Functional
Imaging and Monitoring, Vol. IS11 of SPIE
International Series (SPIE,
Bellingham, Wash., 1993), pp.
121–143.

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult
head,” Appl. Opt. 36, 21–31
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for
light in tissue by a Monte Carlo method,” Adv.
Exp. Med. Biol. 215, 179–192
(1987).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “Application of finite element method for the
forward model in infra-red absorption imaging,” in
Mathematical Methods in Medical Imaging, D. C. Wilson, J. N. Wilson, eds., Proc. SPIE1768, 97–108
(1992).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense
scattering media: derivation and evaluation of imaging
operators,” in Medical Optical Tomography: Functional
Imaging and Monitoring, Vol. IS11 of SPIE
International Series (SPIE,
Bellingham, Wash., 1993), pp.
121–143.

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

A. M. Gandjbakhche, X. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for
quantitative imaging in time-resolved transillumination
experiments,” Appl. Opt. 37, 1973–1981
(1998).

[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “Application of finite element method for the
forward model in infra-red absorption imaging,” in
Mathematical Methods in Medical Imaging, D. C. Wilson, J. N. Wilson, eds., Proc. SPIE1768, 97–108
(1992).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

F. F. Jöbsis, “Noninvasive infrared monitoring of cerebral
and myocardial oxygen sufficiency and circulatory
parameters,” Science 198, 1264–1267
(1977).

[CrossRef]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

A. M. Gandjbakhche, X. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for
quantitative imaging in time-resolved transillumination
experiments,” Appl. Opt. 37, 1973–1981
(1998).

[CrossRef]

R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid
biological media,” J. Opt. Soc. Am. A 4, 423–432
(1987).

[CrossRef]
[PubMed]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

Y. Tsuchiya, K. Ohta, T. Urakami, “Isotropic photon injection for noninvasive
tissue spectroscopy,” Jpn. J. Appl. Phys. 34, 2495–2501
(1995).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult
head,” Appl. Opt. 36, 21–31
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “Application of finite element method for the
forward model in infra-red absorption imaging,” in
Mathematical Methods in Medical Imaging, D. C. Wilson, J. N. Wilson, eds., Proc. SPIE1768, 97–108
(1992).

[CrossRef]

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

Y. Tsuchiya, “Photon path distribution and optical
responses of turbid media: theoretical analysis based on the microscopic
Beer–Lambert law,” Phys. Med.
Biol. 46, 2067–2084
(2001).

[CrossRef]
[PubMed]

H. Zhang, Y. Tsuchiya, “Applicability of time integrated
spectroscopy based on the microscopic Beer–Lambert law to finite turbid
media with curved boundaries,” Opt. Rev. 7, 473–478
(2000).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Quantitation of absorbing substances in
turbid media such as human tissues based on the microscopic Beer–Lambert
law,” Opt. Commun. 144, 269–280
(1997).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Frequency domain analysis of photon
migration based on the microscopic Beer–Lambert
Law,” Jpn. J. Appl. Phys. 35, 4848–4851
(1996).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological
medium having various shapes,” Jpn. J. Appl.
Phys. 34, L79–L81
(1995).

[CrossRef]

Y. Tsuchiya, K. Ohta, T. Urakami, “Isotropic photon injection for noninvasive
tissue spectroscopy,” Jpn. J. Appl. Phys. 34, 2495–2501
(1995).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Optical quantitation of absorbers in
variously shaped turbid media based on the microscopic Beer–Lambert law: a
new approach to optical computerized tomography,” in
Advances in Optical Biopsy and Optical Mammography, R. R. Alfano, ed., Ann. N.Y. Acad. Sci.838, 75–94
(1998).

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Quantitation of absorbing substances in
turbid media such as human tissues based on the microscopic Beer–Lambert
law,” Opt. Commun. 144, 269–280
(1997).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Frequency domain analysis of photon
migration based on the microscopic Beer–Lambert
Law,” Jpn. J. Appl. Phys. 35, 4848–4851
(1996).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological
medium having various shapes,” Jpn. J. Appl.
Phys. 34, L79–L81
(1995).

[CrossRef]

Y. Tsuchiya, K. Ohta, T. Urakami, “Isotropic photon injection for noninvasive
tissue spectroscopy,” Jpn. J. Appl. Phys. 34, 2495–2501
(1995).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Optical quantitation of absorbers in
variously shaped turbid media based on the microscopic Beer–Lambert law: a
new approach to optical computerized tomography,” in
Advances in Optical Biopsy and Optical Mammography, R. R. Alfano, ed., Ann. N.Y. Acad. Sci.838, 75–94
(1998).

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for
light in tissue by a Monte Carlo method,” Adv.
Exp. Med. Biol. 215, 179–192
(1987).

[CrossRef]
[PubMed]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, Y. Tsuchiya, “Applicability of time integrated
spectroscopy based on the microscopic Beer–Lambert law to finite turbid
media with curved boundaries,” Opt. Rev. 7, 473–478
(2000).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for
light in tissue by a Monte Carlo method,” Adv.
Exp. Med. Biol. 215, 179–192
(1987).

[CrossRef]
[PubMed]

J. N. Winn, L. T. Perelman, K. Chen, J. Wu, R. R. Dasari, M. A. Feld, “Distribution of the paths of early-arriving
photons traversing a turbid medium,” Appl.
Opt. 37, 8085–8091
(1998).

[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance
for the non-invasive measurement of tissue optical
properties,” Appl. Opt. 28, 2331–2336
(1989).

[CrossRef]
[PubMed]

J. C. Schotland, J. C. Haselgrove, J. S. Leigh, “Photon hitting
density,” Appl. Opt. 32, 448–453
(1993).

[CrossRef]
[PubMed]

S. R. Arridge, “Photon-measurement density functions Part I:
analytical forms,” Appl. Opt. 34, 7395–7409
(1995).

[CrossRef]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation
of near-infrared light propagation in a model of the adult
head,” Appl. Opt. 36, 21–31
(1997).

[CrossRef]
[PubMed]

A. M. Gandjbakhche, X. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for
quantitative imaging in time-resolved transillumination
experiments,” Appl. Opt. 37, 1973–1981
(1998).

[CrossRef]

H. Zhang, T. Urakami, Y. Tsuchiya, Z. Lu, T. Hiruma, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: application to small-sized
phantoms having different boundary conditions,” J.
Biomed. Opt. 4, 183–190
(1999).

[CrossRef]
[PubMed]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological
medium having various shapes,” Jpn. J. Appl.
Phys. 34, L79–L81
(1995).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Frequency domain analysis of photon
migration based on the microscopic Beer–Lambert
Law,” Jpn. J. Appl. Phys. 35, 4848–4851
(1996).

[CrossRef]

Y. Tsuchiya, K. Ohta, T. Urakami, “Isotropic photon injection for noninvasive
tissue spectroscopy,” Jpn. J. Appl. Phys. 34, 2495–2501
(1995).

[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamasita, Y. Tsuchiya, “Average value method: a new approach to
practical optical computed tomography for a turbid medium such as human
tissue,” Jpn. J. Appl. Phys. 37, 2717–2723
(1998).

[CrossRef]

H. Zhang, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Quantitation of absorbers in turbid media
using time integrated spectroscopy based on microscopic Beer–Lambert
law,” Jpn. J. Appl. Phys. 37, 2724–2727
(1998).

[CrossRef]

B. C. Wilson, G. Adam, “Monte Carlo model for the absorption and
flux distributions of light in tissue,” Med.
Phys. 10, 824–830
(1983).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling
photon transport in tissue,” Med. Phys. 20, 299–309
(1993).

[CrossRef]
[PubMed]

H. Zhang, Y. Tsuchiya, M. Miwa, T. Urakami, Y. Yamashita, “Time integrated spectroscopy of turbid media
based on the microscopic Beer–Lambert law: consideration of the wavelength
dependence of scattering properties,” Opt.
Commun. 153, 314–322
(1998).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Quantitation of absorbing substances in
turbid media such as human tissues based on the microscopic Beer–Lambert
law,” Opt. Commun. 144, 269–280
(1997).

[CrossRef]

H. Zhang, Y. Tsuchiya, “Applicability of time integrated
spectroscopy based on the microscopic Beer–Lambert law to finite turbid
media with curved boundaries,” Opt. Rev. 7, 473–478
(2000).

[CrossRef]

Y. Tsuchiya, “Photon path distribution and optical
responses of turbid media: theoretical analysis based on the microscopic
Beer–Lambert law,” Phys. Med.
Biol. 46, 2067–2084
(2001).

[CrossRef]
[PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

L. T. Perelman, J. Wu, I. Itzkan, S. F. Feld, “Photon migration in turbid media using path
integrals,” Phys. Rev. Lett. 72, 1341–1344
(1994).

[CrossRef]
[PubMed]

F. F. Jöbsis, “Noninvasive infrared monitoring of cerebral
and myocardial oxygen sufficiency and circulatory
parameters,” Science 198, 1264–1267
(1977).

[CrossRef]

Y. Ueda, K. Ohta, Y. Yamasita, Y. Tsuchiya, “Calculation of the photon path distribution
in the turbid medium,” in Second Symposium on
Biomedical Optics, Proc. Opt. Soc. Jpn. 2, 6–9
(2001).

Y. Tsuchiya, T. Urakami, “Optical quantitation of absorbers in
variously shaped turbid media based on the microscopic Beer–Lambert law: a
new approach to optical computerized tomography,” in
Advances in Optical Biopsy and Optical Mammography, R. R. Alfano, ed., Ann. N.Y. Acad. Sci.838, 75–94
(1998).

B. Chance, R. R. Alfano, eds., Photon Migration and Imaging in Random Media and
Tissues, Proc. SPIE1888, (1993).

B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy
of Tissue and Model Media: Theory, Human Studies, and Instrumentation,
Proc. SPIE2389 (1995).

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissues:
Theory, Instrumentation, Model, and Human Studies II, Proc.
SPIE2979(1997).

B. Chance, R. R. Alfano, B. Tromberg, eds., Optical Tomography and Spectroscopy of Tissue
III, Proc. SPIE3597 (1999).

H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense
scattering media: derivation and evaluation of imaging
operators,” in Medical Optical Tomography: Functional
Imaging and Monitoring, Vol. IS11 of SPIE
International Series (SPIE,
Bellingham, Wash., 1993), pp.
121–143.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “Application of finite element method for the
forward model in infra-red absorption imaging,” in
Mathematical Methods in Medical Imaging, D. C. Wilson, J. N. Wilson, eds., Proc. SPIE1768, 97–108
(1992).

[CrossRef]

J. Haselgrove, J. Leigh, Y. Conway, N. G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of
photon migration in non-infinite highly scattering media,”
in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 30–41
(1991).

[CrossRef]