Abstract

Spatial unsharp-mask processing and its variants are commonly used in x-ray radiography to enhance image contrast. We investigated the effect of three unsharp-masking filter kernels of different sizes on the detection of an advanced guidewire tip in simulated x-ray fluoroscopy image sequences. To isolate the effect of visual temporal processing, we repeated the experiments on single images. Filter gains were selected so that all three kernels increased the contrast of a 0.018-in. (0.457-mm) guidewire by a factor of 2 but had different effects on image noise and signal profiles. There was no statistically significant effect of unsharp masking on human-observer performance in single images. However, all three kernels significantly improved average performance in image sequences, and the guidewire contrast required for detection was reduced by 32%–40%. A prewhitening channelized observer model predicted the disparity between sequences and single images and fitted measurements at different kernel sizes well. A nonprewhitening observer model did not. We conclude that unsharp masking is a simple and effective method of improving guidewire visualization in fluoroscopically guided interventional procedures and that quantitative image quality studies are essential for evaluation of image-processing techniques in sequences such as x-ray fluoroscopy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
    [CrossRef]
  2. J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
    [CrossRef]
  3. C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
    [CrossRef]
  4. C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
    [CrossRef]
  5. D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
    [CrossRef] [PubMed]
  6. K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
    [CrossRef]
  7. F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
    [CrossRef]
  8. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  9. A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
    [CrossRef]
  10. M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
    [PubMed]
  11. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).
  12. M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
    [CrossRef] [PubMed]
  13. F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
    [CrossRef]
  14. Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
    [CrossRef] [PubMed]
  15. R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
    [CrossRef] [PubMed]
  16. W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
    [CrossRef]
  17. R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
    [CrossRef] [PubMed]
  18. A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).
  19. P. Vuylsteke, E. Schoeters, “Multiscale image contrast amplification (MUSICA),” in Medical Imaging 1994: Image Processing, M. H. Loew, ed., Proc. SPIE2167, 551–560 (1994).
    [CrossRef]
  20. L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
    [CrossRef] [PubMed]
  21. R. Aufrichtig, “Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography,” Med. Phys. 26, 1349–1358 (1999).
    [CrossRef] [PubMed]
  22. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985).
    [CrossRef] [PubMed]
  23. A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694–704 (1999).
    [CrossRef]
  24. M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
    [PubMed]
  25. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994).
    [CrossRef]
  26. R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
    [CrossRef]
  27. P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
    [CrossRef]
  28. D. H. Kelly, “Motion and vision, II: stabilized spatiotemporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979).
    [CrossRef] [PubMed]
  29. A. E. Burgess, X. Li, C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420–2442 (1997).
    [CrossRef]
  30. A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988).
    [CrossRef] [PubMed]
  31. K. J. Myers, H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 2447–2457 (1987).
    [CrossRef] [PubMed]
  32. P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
    [CrossRef]
  33. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996).
    [CrossRef] [PubMed]
  34. P. R. Granfors, “Performance characteristics of an amorphous silicon flat panel x-ray imaging detector,” in Medical Imaging 1999: Physics of Medical Imaging, J. M. Boone, J. T. Dobbins, eds., Proc. SPIE3659, 480–490 (1999).
    [CrossRef]
  35. D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 1999).
  36. J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
    [CrossRef]
  37. R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic Press, San Diego, Calif., 1995).
  38. R. E. Fredericksen, R. F. Hess, “Temporal detection in human vision: Dependence on spatial frequency,” J. Opt. Soc. Am. A 16, 2601–2611 (1999).
    [CrossRef]
  39. J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
    [PubMed]
  40. E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
    [CrossRef]
  41. F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
    [CrossRef] [PubMed]
  42. Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

2001 (1)

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

2000 (3)

M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
[CrossRef] [PubMed]

F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
[CrossRef]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

1999 (9)

R. E. Fredericksen, R. F. Hess, “Temporal detection in human vision: Dependence on spatial frequency,” J. Opt. Soc. Am. A 16, 2601–2611 (1999).
[CrossRef]

D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
[CrossRef] [PubMed]

E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
[CrossRef]

F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
[CrossRef] [PubMed]

A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694–704 (1999).
[CrossRef]

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

R. Aufrichtig, “Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography,” Med. Phys. 26, 1349–1358 (1999).
[CrossRef] [PubMed]

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

1998 (2)

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

1997 (2)

A. E. Burgess, X. Li, C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420–2442 (1997).
[CrossRef]

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

1996 (3)

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

1995 (2)

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
[CrossRef]

1994 (2)

1993 (2)

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
[CrossRef]

1992 (1)

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

1991 (1)

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

1988 (1)

1987 (1)

1986 (1)

A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
[CrossRef]

1985 (2)

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985).
[CrossRef] [PubMed]

1984 (1)

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

1979 (1)

Aach, T.

M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
[CrossRef] [PubMed]

Abbey, C. K.

Asakura, K.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Aufrichtig, R.

D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
[CrossRef] [PubMed]

R. Aufrichtig, “Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography,” Med. Phys. 26, 1349–1358 (1999).
[CrossRef] [PubMed]

R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

Barrett, H. H.

Beam, C. A.

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

Belden, C. J.

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

Bochud, F. O.

F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
[CrossRef] [PubMed]

Borgstrom, M. C.

Bosch, E.

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Brailean, J. C.

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

Braunschweig, R.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Buddenbrock, B.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Buelloni, G.

A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
[CrossRef]

Burgess, A. E.

Chan, C. L.

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
[CrossRef]

Colborne, B.

Dhawan, A. P.

A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
[CrossRef]

Dippel, S.

M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
[CrossRef] [PubMed]

Dobbins, J. T.

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

Doi, K.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Eckstein, M. P.

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Efstratiadis, S. N.

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

Eigler, N. L.

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Eyler, W. R.

E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
[CrossRef]

Flynn, M. J.

E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
[CrossRef]

Fredericksen, R. E.

Galanski, M.

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

Gilmore, G. C.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

Gocke, P.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).

Gordon, R.

A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
[CrossRef]

Granfors, P. R.

P. R. Granfors, “Performance characteristics of an amorphous silicon flat panel x-ray imaging detector,” in Medical Imaging 1999: Physics of Medical Imaging, J. M. Boone, J. T. Dobbins, eds., Proc. SPIE3659, 480–490 (1999).
[CrossRef]

Hanamura, K.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Hasegawa, M.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Herting, D.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Hess, R. F.

Hirche, H.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Huda, W.

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

Ishida, M.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Jabri, K. N.

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
[CrossRef] [PubMed]

Jain, A. K.

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

John, V.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Katsaggelos, A. K.

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
[CrossRef]

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
[CrossRef]

Katsumi, A.

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

Katsuragawa, S.

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

Kelly, D. H.

Kiyono, K.

F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
[CrossRef]

Kleihorst, R. P.

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

Konietzko, N.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Lagendijk, R. L.

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

Lehr, J. L.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Li, F.

F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
[CrossRef]

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Li, X.

Loo, L. D.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

Loo, L.-N.

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Maruyama, Y.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Marx, M. V.

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

McDonough, R. N.

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic Press, San Diego, Calif., 1995).

McNeese, M. D.

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

Metz, C. E.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

Mohnke, M.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Montgomery, D. C.

D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 1999).

Morioka, C. A.

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Muller, R. D.

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Muller, R.-D.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Myers, K. J.

Oestmann, J. W.

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

Palmer, C. K.

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

Patton, D. D.

Prokop, M.

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

Ravin, C. E.

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

Rice, J. T.

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

Runger, G. C.

D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 1999).

Sahakian, A. V.

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
[CrossRef]

Samei, E.

E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
[CrossRef]

Sanchez-Marin, F. J.

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

Sasaki, Y.

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

Schaefer, C. M.

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

Schoeters, E.

P. Vuylsteke, E. Schoeters, “Multiscale image contrast amplification (MUSICA),” in Medical Imaging 1994: Image Processing, M. H. Loew, ed., Proc. SPIE2167, 551–560 (1994).
[CrossRef]

Seeley, G. W.

Siegel, E. L.

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

Sone, S.

F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
[CrossRef]

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Srinivas, Y.

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

Stahl, M.

M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
[CrossRef] [PubMed]

Takashima, S.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Thomas, C. W.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

Valley, J.-F.

F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
[CrossRef] [PubMed]

Verdun, F. R.

F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
[CrossRef] [PubMed]

Voss, M.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

Vuylsteke, P.

P. Vuylsteke, E. Schoeters, “Multiscale image contrast amplification (MUSICA),” in Medical Imaging 1994: Image Processing, M. H. Loew, ed., Proc. SPIE2167, 551–560 (1994).
[CrossRef]

Wagner, L. K.

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

Webb, L. A.

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

Whalen, A. D.

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic Press, San Diego, Calif., 1995).

Whiting, J. S.

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Wiebringhaus, R.

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Wilson, D. L.

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
[CrossRef] [PubMed]

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).

Xue, P.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

Yanagisawa, T.

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

Yang, Z.-G.

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

Acta Radiol. (3)

F. Li, S. Sone, K. Kiyono, “Lung nodule conspicuity using unsharp mask filters with storage-phosphor-based computed radiography,” Acta Radiol. 38, 99–103 (2000).
[CrossRef]

Z.-G. Yang, S. Sone, F. Li, S. Takashima, Y. Maruyama, M. Hasegawa, K. Hanamura, K. Asakura, “Detection of small peripheral lung cancer by digital chest radiography: Performance of unprocessed versus unsharp mask-processed images,” Acta Radiol. 40, 505–509 (1999).
[CrossRef] [PubMed]

R.-D. Muller, D. Herting, H. Hirche, V. John, B. Buddenbrock, P. Gocke, R. Wiebringhaus, R. Braunschweig, M. Voss, M. Mohnke, N. Konietzko, “Effects of varying filter kernel sizes on the image quality of interstitial lung diseases,” Acta Radiol. 37, 732–740 (1996).
[CrossRef] [PubMed]

Behav. Res. Meth. Instrum. Comput. (1)

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Meth. Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

Eur. Radiol. (1)

R. D. Muller, M. Voss, H. Hirche, B. Buddenbrock, V. John, E. Bosch, “Unsharp masking of low-dosed digital luminescence radiographs: results of a receiver operating characteristics analysis,” Eur. Radiol. 6, 526–531 (1996).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (2)

F. J. Sanchez-Marin, Y. Srinivas, K. N. Jabri, D. L. Wilson, “Quantitative image quality analysis of a non-linear spatio-temporal filter,” IEEE Trans. Image Process. 10, 288–295 (2001).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Linear-quadratic noise-smoothing filters for quantum-limited images,” IEEE Trans. Image Process. 4, 1328–1333 (1995).
[CrossRef]

IEEE Trans. Med. Imaging (3)

D. L. Wilson, K. N. Jabri, R. Aufrichtig, “Perception of temporally filtered x-ray fluoroscopy images,” IEEE Trans. Med. Imaging 18, 22–31 (1999).
[CrossRef] [PubMed]

A. P. Dhawan, G. Buelloni, R. Gordon, “Enhancement of mammographic features by optimal adaptive neighborhood image processing,” IEEE Trans. Med. Imaging MI-5, 8–15 (1986).
[CrossRef]

C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993).
[CrossRef]

Invest. Radiol. (1)

A. Katsumi, S. Katsuragawa, Y. Sasaki, T. Yanagisawa, “A fully automated adaptive unsharp masking technique in digital chest radiograph,” Invest. Radiol. 27, 64–70 (1991).

J. Digital Imag. (1)

W. Huda, C. J. Belden, L. A. Webb, C. K. Palmer, “Support line and tube visibility in chest examinations using computed radiography,” J. Digital Imag. 10, 126–131 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694–704 (1999).
[CrossRef]

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994).
[CrossRef]

R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

R. E. Fredericksen, R. F. Hess, “Temporal detection in human vision: Dependence on spatial frequency,” J. Opt. Soc. Am. A 16, 2601–2611 (1999).
[CrossRef]

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

A. E. Burgess, X. Li, C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420–2442 (1997).
[CrossRef]

K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985).
[CrossRef] [PubMed]

K. J. Myers, H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 2447–2457 (1987).
[CrossRef] [PubMed]

A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988).
[CrossRef] [PubMed]

Med. Phys. (6)

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

F. O. Bochud, J.-F. Valley, F. R. Verdun, “Estimation of the noisy component of anatomical backgrounds,” Med. Phys. 26, 1365–1370 (1999).
[CrossRef] [PubMed]

Y. Srinivas, K. N. Jabri, F. J. Sanchez-Marin, D. L. Wilson, “Quantitative image quality evaluation of temporal and spatio-temporal filtering of x-ray fluoroscopy sequences,” Med. Phys. 27, 1447 (2000).

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

R. Aufrichtig, “Comparison of low contrast detectability between a digital amorphous silicon and a screen-film based imaging system for thoracic radiography,” Med. Phys. 26, 1349–1358 (1999).
[CrossRef] [PubMed]

M. Stahl, T. Aach, S. Dippel, “Digital radiography enhancement by nonlinear multiscale processing,” Med. Phys. 27, 56–65 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995).
[CrossRef]

Radiology (5)

M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: Effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984).
[PubMed]

L. K. Wagner, M. D. McNeese, M. V. Marx, E. L. Siegel, “Severe skin reactions from interventional fluoroscopy: case report and review of the literature,” Radiology 213, 776 (1999).
[CrossRef]

M. Prokop, C. M. Schaefer, J. W. Oestmann, M. Galanski, “Improved parameters for unsharp mask filtering of digital chest radiographs,” Radiology 187, 521–526 (1993).
[PubMed]

J. T. Dobbins, J. T. Rice, C. A. Beam, C. E. Ravin, “Threshold perception performance with computed and screen-film radiography: implications for chest radiography,” Radiology 183, 179–187 (1992).
[PubMed]

E. Samei, M. J. Flynn, W. R. Eyler, “Detection of subtle lung nodules: Relative influence of quantum and anatomic noise on chest radiographs,” Radiology 213, 734 (1999).
[CrossRef]

Other (7)

P. R. Granfors, “Performance characteristics of an amorphous silicon flat panel x-ray imaging detector,” in Medical Imaging 1999: Physics of Medical Imaging, J. M. Boone, J. T. Dobbins, eds., Proc. SPIE3659, 480–490 (1999).
[CrossRef]

D. C. Montgomery, G. C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 1999).

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic Press, San Diego, Calif., 1995).

R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).

P. Vuylsteke, E. Schoeters, “Multiscale image contrast amplification (MUSICA),” in Medical Imaging 1994: Image Processing, M. H. Loew, ed., Proc. SPIE2167, 551–560 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sectional profiles of an image of a 0.018-in. (0.457-mm) guidewire. Profiles are with no processing (NUSM) and with unsharp-mask processing with small (USMS), medium (USMM), and large (USML) kernels. The gain factor k [Eq. (2)] for each kernel was chosen so that all three kernels increase the peak contrast of the guidewire profile by a factor of 2. Edge overshoots are most evident with USMS and are least with USML.

Fig. 2
Fig. 2

Frequency transfer functions for the three USM kernels combined with the system MTF. The NUSM curve represents the response with no unsharp masking and is the system MTF. The peak in spatial-frequency enhancement is slightly different for the different kernels.

Fig. 3
Fig. 3

Sample images before processing [(a)] and after processing with the kernels USMS [(b)], USMM [(c)], and USML [(d)]. Although the peak contrast of the guidewire is doubled in all three processed images [(b)–(d)] as compared with the unprocessed one [(a)], noise level and correlation is different in each. Guidewire contrast is increased in this figure for clarity.

Fig. 4
Fig. 4

Sample frame from the nine-alternative forced-choice display. In eight of the nine alternative display fields, a projection of a 0.018-in. curved guidewire is placed such that its tip coincides with the center of the field. In the ninth field, the tip of the guidewire is advanced such that the guidewire is slightly longer. The observer rightly or wrongly chooses the field with the advanced guidewire. In this figure, the correct choice is the lower right field. In experiments, either a single frame is displayed or 60 frames are displayed in a repeating loop at 30 frames/s. Noise in this figure is reduced for clarity.

Fig. 5
Fig. 5

Contrast-sensitivity measurements for four subjects as a function of USM kernel in (a) single images and (b) image sequences. Each value was estimated from 200 experimental trials and has a coefficient of variation of ≈5%. An ANOVA finds a significant effect of processing with each USM kernel (USMS, USMM, USML) when compared with no processing (NUSM) in sequences [(b)], but no such effect is detected in single images [(a)].

Fig. 6
Fig. 6

Comparisons of average measurements across observers with predictions from both the NPW-HVS observer model and the PWC observer model for (a) single images and (b) image sequences. Model predictions were obtained from the contrast sensitivity required to achieve a model SNR of 2.93. Error bars represent ±1 standard error of the mean. Best-fit parameters for both the NPW-HVS (β=0.9 and T=3.5) and the PWC (β=1.3 and T=4.7) models were determined by fixing Nint=1.0 and varying β and T to minimize the mean square error between model predictions and observer data. The PWC model predicts trends correctly and has a much better fit to data.

Fig. 7
Fig. 7

PWC model predictions for unsharp-mask processing in image sequences. SNR values are normalized by the value obtained before processing. Ratios are plotted for different kernel sizes, defined by σh, as a function of the gain factor k. Plots show a potential improvement of more than 80% after unsharp masking. The dashed lines connect points of equal peak contrast enhancement. A C×2 label indicates points where the guidewire contrast is doubled, C×3 indicates a tripling of the contrast, and so forth.

Fig. 8
Fig. 8

CNR as a function of kernel size, σh, and gain factor, k. CNR values are normalized by the value obtained before unsharp-mask processing. The larger the kernel, the less the degradation in the CNR. The operating points of the three USM kernels used in experiments and their corresponding CNR degradation are indicated on the curves.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

o(x, y)=i(x, y)+k[i(x, y)-i(x, y)*h(x, y)],
USM(x, y)=(k+1)δ(x, y)-k2πσh2exp-12x2+y2σh2,
USMS:σh=0.3 mm,k=2.448,
USMM:σh=0.8 mm,k=1.350,
USML:σh=1.6 mm,k=1.154.
E=S2(x, y)dxdy,
SNRNPW-HVS
=|USM(u, v)|2|MTF(u, v)|2|S(u, v)|2|V(u, v)|2dudv{|V(u, v)|4|USM(u, v)|2|MTF(u, v)|2(1+β)Next(u, v)+Nint}|USM(u, v)|2|MTF(u, v)|2|S(u, v)|2dudv,
SNRPWC=i=1N[|USM(u, v)||MTF(u, v)||S(u, v)||V(u, v)|Ci(u, v)dudv]2|V(u, v)|2|USM(u, v)|2|MTF(u, v)|2(1+β)Next(u, v)Ci2(u, v)dudv+Nint,
Next=σ2/T2.
C=gb-ggwgb

Metrics