Abstract

The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency, and phase as the signal. The shape of the contrast-increment threshold versus pedestal contrast (TvC) functions depends on the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the TvC functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s law.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–556 (1968).
  2. G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  3. D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
    [CrossRef]
  4. G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
    [CrossRef] [PubMed]
  5. A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
    [CrossRef] [PubMed]
  6. F. W. Campbell, J. J. Kulikowski, “Orientation selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).
  7. J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” J. Physiol. (London) 14, 1039–1042 (1974).
  8. B. Leshowitz, D. H. Raab, “Effects of stimulus duration on the detection of sinusoids added to continuous pedestals,” J. Acoust. Soc. Am. 41, 489–496 (1967).
    [CrossRef]
  9. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  10. G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
    [CrossRef] [PubMed]
  11. F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).
  12. J. J. Kulikowski, P. E. King-Smith, “Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
    [CrossRef] [PubMed]
  13. D. M. Green, “Psychoacoustics and detection theory,” J. Acoust. Soc. Am. 32, 1189–1203 (1960).
    [CrossRef]
  14. J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
    [CrossRef] [PubMed]
  15. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1532 (1985).
    [CrossRef] [PubMed]
  16. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
    [CrossRef]
  17. F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. thesis, Oxford University, Oxford, UK, 1999.
  18. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  19. F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
    [CrossRef]
  20. F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
    [CrossRef]
  21. N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. thesis, Oxford University, Oxford, UK, 2001.
  22. M. V. Levine, “Transformations that render curves parallel,” J. Math. Psychol. 7, 410–443 (1970).
    [CrossRef]
  23. J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  24. D. H. Kelly, “Flickering patterns and lateral inhibition,” J. Opt. Soc. Am. 59, 1361–1370 (1969).
    [CrossRef]
  25. G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
    [CrossRef] [PubMed]
  26. A. Bradley, I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26, 991–997 (1986).
    [CrossRef] [PubMed]

2001 (2)

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

1998 (1)

F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).

1994 (1)

1991 (1)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1989 (1)

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

1986 (1)

A. Bradley, I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26, 991–997 (1986).
[CrossRef] [PubMed]

1985 (1)

1983 (1)

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

1981 (2)

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

1980 (1)

1975 (1)

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” J. Physiol. (London) 14, 1039–1042 (1974).

1973 (1)

J. J. Kulikowski, P. E. King-Smith, “Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

1970 (1)

M. V. Levine, “Transformations that render curves parallel,” J. Math. Psychol. 7, 410–443 (1970).
[CrossRef]

1969 (2)

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

D. H. Kelly, “Flickering patterns and lateral inhibition,” J. Opt. Soc. Am. 59, 1361–1370 (1969).
[CrossRef]

1968 (1)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–556 (1968).

1967 (1)

B. Leshowitz, D. H. Raab, “Effects of stimulus duration on the detection of sinusoids added to continuous pedestals,” J. Acoust. Soc. Am. 41, 489–496 (1967).
[CrossRef]

1966 (2)

F. W. Campbell, J. J. Kulikowski, “Orientation selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

1960 (1)

D. M. Green, “Psychoacoustics and detection theory,” J. Acoust. Soc. Am. 32, 1189–1203 (1960).
[CrossRef]

Bradley, A.

A. Bradley, I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26, 991–997 (1986).
[CrossRef] [PubMed]

Broadbent, D. E.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–556 (1968).

F. W. Campbell, J. J. Kulikowski, “Orientation selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Derrington, A. M.

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

Foley, J. M.

Green, D. M.

D. M. Green, “Psychoacoustics and detection theory,” J. Acoust. Soc. Am. 32, 1189–1203 (1960).
[CrossRef]

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Henning, G. B.

F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

Hertz, B. G.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Hill, N. J.

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. thesis, Oxford University, Oxford, UK, 2001.

Kelly, D. H.

King-Smith, P. E.

J. J. Kulikowski, P. E. King-Smith, “Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

Kulikowski, J. J.

J. J. Kulikowski, P. E. King-Smith, “Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

F. W. Campbell, J. J. Kulikowski, “Orientation selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

Legge, G. E.

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

Leshowitz, B.

B. Leshowitz, D. H. Raab, “Effects of stimulus duration on the detection of sinusoids added to continuous pedestals,” J. Acoust. Soc. Am. 41, 489–496 (1967).
[CrossRef]

Levine, M. V.

M. V. Levine, “Transformations that render curves parallel,” J. Math. Psychol. 7, 410–443 (1970).
[CrossRef]

Nachmias, J.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” J. Physiol. (London) 14, 1039–1042 (1974).

Ohzawa, I.

A. Bradley, I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26, 991–997 (1986).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1532 (1985).
[CrossRef] [PubMed]

Ploghaus, A. C.

F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).

Raab, D. H.

B. Leshowitz, D. H. Raab, “Effects of stimulus duration on the detection of sinusoids added to continuous pedestals,” J. Acoust. Soc. Am. 41, 489–496 (1967).
[CrossRef]

Robson, J. G.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–556 (1968).

J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” J. Physiol. (London) 14, 1039–1042 (1974).

Smith, R. A.

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Swift, D. J.

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

Wichmann, F. A.

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).

F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. thesis, Oxford University, Oxford, UK, 1999.

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (3)

B. Leshowitz, D. H. Raab, “Effects of stimulus duration on the detection of sinusoids added to continuous pedestals,” J. Acoust. Soc. Am. 41, 489–496 (1967).
[CrossRef]

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

D. M. Green, “Psychoacoustics and detection theory,” J. Acoust. Soc. Am. 32, 1189–1203 (1960).
[CrossRef]

J. Math. Psychol. (1)

M. V. Levine, “Transformations that render curves parallel,” J. Math. Psychol. 7, 410–443 (1970).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (3)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–556 (1968).

F. W. Campbell, J. J. Kulikowski, “Orientation selectivity of the human visual system,” J. Physiol. (London) 187, 437–445 (1966).

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” J. Physiol. (London) 14, 1039–1042 (1974).

Percept. Psychophys. (2)

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

Perception (1)

F. A. Wichmann, G. B. Henning, A. C. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27, S86 (1998).

Vision Res. (8)

J. J. Kulikowski, P. E. King-Smith, “Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

A. Bradley, I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26, 991–997 (1986).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Other (3)

F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. thesis, Oxford University, Oxford, UK, 1999.

N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. thesis, Oxford University, Oxford, UK, 2001.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Proportion of correct responses (linear) as a function of signal contrast (logarithmic) for 8.37-c/deg stimuli. The results are for observer CMB, and each observation point is based on 100 observations. Results are shown for pedestal contrasts of 0% (detection, open squares), 30% (black squares), and 3.25% (gray squares). The smooth curves are the best-fitting three-parameter Weibull functions.19,20 (b) Identical to (a), but for observer GBH.

Fig. 2
Fig. 2

(a) Signal contrast corresponding to 90%, 75%, and 60% correct as a function of pedestal contrast; both axes are logarithmic, and the spatial frequency of the grating is 8.37 c/deg. (For convenience, the result from the detection condition, 0 pedestal contrast, is arbitrarily plotted at a contrast of 0.0001%.) The results are derived from fits to 4–5-point psychometric functions (100 observations per point) for observer CMB. The error bars show 95% confidence intervals.19,20 (b) Identical to (a), but for observer GBH.

Fig. 3
Fig. 3

Normalized contrast increment (or normalized signal contrast) as a function of normalized pedestal contrast. The three rows show the normalized contours for 60%, 75%, and 90% correct, for stimuli of five different spatial frequencies: 2.09 c/deg (circles), 4.19 c/deg (triangles), 8.37 c/deg (squares), and 16.74 c/deg (diamonds). The uniform field or 0.0-c/deg results are shown as asterisks. Both axes are logarithmic. The normalization factors for each spatial frequency, the contrasts corresponding to the 75% correct detection at that spatial frequency, were used for both axes and all three performance contours. (For convenience, the result from the detection condition, zero pedestal contrast, is plotted at an arbitrarily low but nonzero pedestal contrast.) The error bars show 95% confidence intervals.19,20 The left-hand column shows the results for CMB, the right-hand column for GBH.

Fig. 4
Fig. 4

Form in which data from Fig. 3 appear when the relative contrast of the signal-plus-pedestal to that of the pedestal alone is plotted against the contrast of the signal-plus-pedestal on logarithmic coordinates. The fine lines show contours of constant performance. In experiments performed with fixed pedestal contrast and increasing signal contrast, the usual psychometric functions move upward over the underlying surface at an angle of 45° (along the thick bars). (The data from which Fig. 4 derives are for observer GBH and 8.37-c/deg gratings from Ref. 11.

Tables (1)

Tables Icon

Table 1 Slopes and [95% Confidence Intervals]

Metrics