Abstract

Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-cycles-per-degree pulse-train, or line, grating contained at least eight harmonics all at equal contrast, it was no more detectable than its most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train approximately a factor of 4 more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and with 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision, in particular the implications for possible sources of internal noise.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  2. J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
    [CrossRef] [PubMed]
  3. G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  4. F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. dissertation (Oxford University, Oxford, UK, 1999).
  5. G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
    [CrossRef] [PubMed]
  6. A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
    [CrossRef] [PubMed]
  7. F. A. Wichmann, D. J. Tollin, “Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products,” Invest. Ophthalmol. Visual Sci. 38, S631 (1997).
  8. F. A. Wichmann, “Plaid maskers revisited: asymmetric plaids,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2001), Vol. 3, p. 57.
  9. F. A. Wichmann, G. B. Henning, “Implications of the pedestal effect for models of contrast-processing and gain-control,” presented at the 1999 OSA Annual Meeting, September 26–October 1, Santa Clara, Calif.
  10. G. B. Henning, F. A. Wichmann, “Pedestal effects with periodic pulse trains,” Perception 28 (Suppl.), S137 (1999).
  11. J. Yang, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
    [CrossRef] [PubMed]
  12. J. Yang, W. Makous, “Modelling pedestal experiments with amplitude instead of contrast,” Vision Res. 35, 1979–1989 (1995).
    [CrossRef] [PubMed]
  13. W. Makous, “Fourier models and the loci of adaptation,” J. Opt. Soc. Am. A 14, 2323–2345 (1997).
    [CrossRef]
  14. F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).
  15. C. M. Bird, G. B. Henning, F. A. Wichmann, “Contrast discrimination with sinusoidal gratings of different spatial frequency,” J. Opt. Soc. Am. A 19, 1267–1273 (2002).
    [CrossRef]
  16. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).
  17. F. A. Wichmann, G. B. Henning, “Contrast discrimination using periodic pulse trains,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2000), p. 74.
  18. F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
    [CrossRef]
  19. F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
    [CrossRef]
  20. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  21. N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single and multichannel models,” Vision Res. 11, 251–259 (1971).
    [CrossRef] [PubMed]
  22. N. Graham, “Visual detection of aperiodic spatial stimuli by probability summation among narrowband channels,” Vision Res. 17, 637–652 (1977).
    [CrossRef] [PubMed]
  23. J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
    [CrossRef] [PubMed]
  24. C. W. Tyler, C.-C. Chen, “Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation,” Vision Res. 40, 3121–3144 (2000).
    [CrossRef] [PubMed]
  25. C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selective to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  26. C. Stromeyer, B. Julesz, “Spatial frequency masking in vision: critical bands and spread of masking,” J. Opt. Soc. Am. 62, 1221–1232 (1972).
    [CrossRef] [PubMed]
  27. G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks,” J. Opt. Soc. Am. 71, 574–581 (1981).
    [CrossRef] [PubMed]
  28. N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence-interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. dissertation (Oxford University, Oxford, UK, 2001).
  29. G. B. Henning, “A model for auditory discrimination and detection,” J. Acoust. Soc. Am. 42, 1325–1334 (1967).
    [CrossRef] [PubMed]
  30. A. F. Dean, “The variability of discharge of simple cells in the cat striate cortex,” Exp. Brain Res. 44, 437–440 (1981).
    [CrossRef] [PubMed]
  31. M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
    [PubMed]
  32. W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
    [CrossRef]
  33. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  34. G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
    [CrossRef] [PubMed]
  35. G. B. Henning, R. W. Millar, N. J. Hill, “The detection of incremental and decremental bars at different locations across Mach bands and related stimuli,” J. Opt. Soc. Am. A 17, 1147–1159 (2000).
    [CrossRef]
  36. A. Gorea, D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nature Neurosci. 4, 1146–1150 (2001).
    [CrossRef] [PubMed]

2002 (1)

2001 (3)

A. Gorea, D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nature Neurosci. 4, 1146–1150 (2001).
[CrossRef] [PubMed]

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

2000 (2)

C. W. Tyler, C.-C. Chen, “Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation,” Vision Res. 40, 3121–3144 (2000).
[CrossRef] [PubMed]

G. B. Henning, R. W. Millar, N. J. Hill, “The detection of incremental and decremental bars at different locations across Mach bands and related stimuli,” J. Opt. Soc. Am. A 17, 1147–1159 (2000).
[CrossRef]

1999 (1)

G. B. Henning, F. A. Wichmann, “Pedestal effects with periodic pulse trains,” Perception 28 (Suppl.), S137 (1999).

1998 (1)

F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).

1997 (3)

F. A. Wichmann, D. J. Tollin, “Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products,” Invest. Ophthalmol. Visual Sci. 38, S631 (1997).

W. Makous, “Fourier models and the loci of adaptation,” J. Opt. Soc. Am. A 14, 2323–2345 (1997).
[CrossRef]

W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
[CrossRef]

1996 (1)

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

1995 (2)

J. Yang, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Modelling pedestal experiments with amplitude instead of contrast,” Vision Res. 35, 1979–1989 (1995).
[CrossRef] [PubMed]

1991 (1)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1989 (1)

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

1981 (3)

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks,” J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

A. F. Dean, “The variability of discharge of simple cells in the cat striate cortex,” Exp. Brain Res. 44, 437–440 (1981).
[CrossRef] [PubMed]

1980 (1)

1977 (1)

N. Graham, “Visual detection of aperiodic spatial stimuli by probability summation among narrowband channels,” Vision Res. 17, 637–652 (1977).
[CrossRef] [PubMed]

1975 (1)

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

1972 (1)

1971 (1)

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single and multichannel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

1969 (2)

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selective to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

1968 (1)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

1967 (1)

G. B. Henning, “A model for auditory discrimination and detection,” J. Acoust. Soc. Am. 42, 1325–1334 (1967).
[CrossRef] [PubMed]

Albrecht, D. G.

W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
[CrossRef]

Bird, C. M.

Blakemore, C.

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selective to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Britten, K.-H.

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

Broadbent, D. E.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Campbell, F. W.

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selective to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Chen, C.-C.

C. W. Tyler, C.-C. Chen, “Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation,” Vision Res. 40, 3121–3144 (2000).
[CrossRef] [PubMed]

Dean, A. F.

A. F. Dean, “The variability of discharge of simple cells in the cat striate cortex,” Exp. Brain Res. 44, 437–440 (1981).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

Foley, J. M.

Geisler, W. S.

W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
[CrossRef]

Gorea, A.

A. Gorea, D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nature Neurosci. 4, 1146–1150 (2001).
[CrossRef] [PubMed]

Graham, N.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

N. Graham, “Visual detection of aperiodic spatial stimuli by probability summation among narrowband channels,” Vision Res. 17, 637–652 (1977).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single and multichannel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Henning, G. B.

C. M. Bird, G. B. Henning, F. A. Wichmann, “Contrast discrimination with sinusoidal gratings of different spatial frequency,” J. Opt. Soc. Am. A 19, 1267–1273 (2002).
[CrossRef]

G. B. Henning, R. W. Millar, N. J. Hill, “The detection of incremental and decremental bars at different locations across Mach bands and related stimuli,” J. Opt. Soc. Am. A 17, 1147–1159 (2000).
[CrossRef]

G. B. Henning, F. A. Wichmann, “Pedestal effects with periodic pulse trains,” Perception 28 (Suppl.), S137 (1999).

F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks,” J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

G. B. Henning, “A model for auditory discrimination and detection,” J. Acoust. Soc. Am. 42, 1325–1334 (1967).
[CrossRef] [PubMed]

F. A. Wichmann, G. B. Henning, “Implications of the pedestal effect for models of contrast-processing and gain-control,” presented at the 1999 OSA Annual Meeting, September 26–October 1, Santa Clara, Calif.

F. A. Wichmann, G. B. Henning, “Contrast discrimination using periodic pulse trains,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2000), p. 74.

Hertz, B. G.

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks,” J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Hill, N. J.

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

G. B. Henning, R. W. Millar, N. J. Hill, “The detection of incremental and decremental bars at different locations across Mach bands and related stimuli,” J. Opt. Soc. Am. A 17, 1147–1159 (2000).
[CrossRef]

N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence-interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. dissertation (Oxford University, Oxford, UK, 2001).

Hinton, J. L.

Julesz, B.

Legge, G. E.

Makous, W.

W. Makous, “Fourier models and the loci of adaptation,” J. Opt. Soc. Am. A 14, 2323–2345 (1997).
[CrossRef]

J. Yang, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Modelling pedestal experiments with amplitude instead of contrast,” Vision Res. 35, 1979–1989 (1995).
[CrossRef] [PubMed]

Millar, R. W.

Movshon, J. A.

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

Nachmias, J.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single and multichannel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Newsome, W.-T.

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

Papoulis, A.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Ploghaus, A.

F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).

Robson, J. G.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Sagi, D.

A. Gorea, D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nature Neurosci. 4, 1146–1150 (2001).
[CrossRef] [PubMed]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Shadlen, M.-N.

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

Stromeyer, C.

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Tollin, D. J.

F. A. Wichmann, D. J. Tollin, “Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products,” Invest. Ophthalmol. Visual Sci. 38, S631 (1997).

Tyler, C. W.

C. W. Tyler, C.-C. Chen, “Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation,” Vision Res. 40, 3121–3144 (2000).
[CrossRef] [PubMed]

Wichmann, F. A.

C. M. Bird, G. B. Henning, F. A. Wichmann, “Contrast discrimination with sinusoidal gratings of different spatial frequency,” J. Opt. Soc. Am. A 19, 1267–1273 (2002).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

G. B. Henning, F. A. Wichmann, “Pedestal effects with periodic pulse trains,” Perception 28 (Suppl.), S137 (1999).

F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).

F. A. Wichmann, D. J. Tollin, “Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products,” Invest. Ophthalmol. Visual Sci. 38, S631 (1997).

F. A. Wichmann, G. B. Henning, “Implications of the pedestal effect for models of contrast-processing and gain-control,” presented at the 1999 OSA Annual Meeting, September 26–October 1, Santa Clara, Calif.

F. A. Wichmann, “Plaid maskers revisited: asymmetric plaids,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2001), Vol. 3, p. 57.

F. A. Wichmann, G. B. Henning, “Contrast discrimination using periodic pulse trains,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2000), p. 74.

F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. dissertation (Oxford University, Oxford, UK, 1999).

Yang, J.

J. Yang, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Modelling pedestal experiments with amplitude instead of contrast,” Vision Res. 35, 1979–1989 (1995).
[CrossRef] [PubMed]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

A. F. Dean, “The variability of discharge of simple cells in the cat striate cortex,” Exp. Brain Res. 44, 437–440 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

F. A. Wichmann, D. J. Tollin, “Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products,” Invest. Ophthalmol. Visual Sci. 38, S631 (1997).

J. Acoust. Soc. Am. (2)

G. B. Henning, “A model for auditory discrimination and detection,” J. Acoust. Soc. Am. 42, 1325–1334 (1967).
[CrossRef] [PubMed]

G. B. Henning, “Amplitude discrimination in noise, pedestal experiments, and additivity of masking,” J. Acoust. Soc. Am. 45, 426–435 (1969).
[CrossRef] [PubMed]

J. Neurosci. (1)

M.-N. Shadlen, K.-H. Britten, W.-T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (2)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selective to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Nature Neurosci. (1)

A. Gorea, D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nature Neurosci. 4, 1146–1150 (2001).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

F. A. Wichmann, N. J. Hill, “The psychometric function I: fitting, sampling and goodness-of-fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

F. A. Wichmann, N. J. Hill, “The psychometric function II: bootstrap based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[CrossRef]

Perception (2)

G. B. Henning, F. A. Wichmann, “Pedestal effects with periodic pulse trains,” Perception 28 (Suppl.), S137 (1999).

F. A. Wichmann, G. B. Henning, A. Ploghaus, “Nonlinearities and the pedestal effect,” Perception 27 (Suppl.), S86 (1998).

Vision Res. (10)

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Modelling pedestal experiments with amplitude instead of contrast,” Vision Res. 35, 1979–1989 (1995).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Some observations on the masking effects of two-dimensional stimuli,” Vision Res. 29, 241–246 (1989).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single and multichannel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

N. Graham, “Visual detection of aperiodic spatial stimuli by probability summation among narrowband channels,” Vision Res. 17, 637–652 (1977).
[CrossRef] [PubMed]

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

C. W. Tyler, C.-C. Chen, “Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation,” Vision Res. 40, 3121–3144 (2000).
[CrossRef] [PubMed]

Visual Neurosci. (1)

W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
[CrossRef]

Other (7)

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

N. J. Hill, “Testing hypotheses about psychometric functions: an investigation of some confidence-interval methods, their accuracy, and their use in evaluating optimal sampling strategies,” D. Phil. dissertation (Oxford University, Oxford, UK, 2001).

F. A. Wichmann, “Some aspects of modelling human spatial vision: contrast discrimination,” D. Phil. dissertation (Oxford University, Oxford, UK, 1999).

F. A. Wichmann, “Plaid maskers revisited: asymmetric plaids,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2001), Vol. 3, p. 57.

F. A. Wichmann, G. B. Henning, “Implications of the pedestal effect for models of contrast-processing and gain-control,” presented at the 1999 OSA Annual Meeting, September 26–October 1, Santa Clara, Calif.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).

F. A. Wichmann, G. B. Henning, “Contrast discrimination using periodic pulse trains,” in Visuelle Wahrnehmung. Beiträge zur 3. Tübinger Wahrnehmungskonferenz, H. H. Bülthoff, M. Fahle, K. R. Gegenfurtner, H. A. Mallot, eds. (Knirsch Verlag, Kirchentellinsfurt, Germany, 2000), p. 74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Luminance of a train of rectangular pulses of width 2B and height 1/2B shown as a function of distance (degrees of visual angle). The train has a period of Y0 degrees and a mean luminance of 1/Y0. The grating of rectangular pulses approaches an ideal pulse train as B decreases toward zero.

Fig. 2
Fig. 2

(a) Cross-sectional luminance profile of a 4.18-c/deg pulse train along a vertical slice through the center of the spatial Hanning window. Luminance (cd/m2) is plotted as a function of distance (degrees of visual angle). A sinusoidal grating of the same mean luminance, 100% contrast, and slightly lower spatial frequency is shown for comparison. (b) Contrast spectrum of the pulse-train and sinusoidal gratings of (a) as a function of spatial frequency.

Fig. 3
Fig. 3

(a) Proportion of correct responses as a function of signal contrast on semilogarithmic axes. Circles and squares, results for 2.09- and 8.37-c/deg sinusoids, respectively; stars, results for the pulse train. The results are for detection (pedestal contrast of 0%) for observer CMB; each data point is based on 100 observations. Contrasts reported for the pulse train are those of its sinusoidal components. The solid curves are the best (maximum-likelihood) Weibull functions fitted to each data set. (b) As for (a), but for observer GBH.

Fig. 4
Fig. 4

As for Fig. 3, but for discrimination experiments with a pedestal contrast of 15%.

Fig. 5
Fig. 5

As for Fig. 3, but the signals were masked by pink noise.

Fig. 6
Fig. 6

As for Fig. 5, but for discrimination experiments with a pedestal contrast of 15%.

Fig. 7
Fig. 7

(a) Proportion of correct responses as a function of signal contrast on semi-logarithmic axes. Circles, results for 2.09-c/deg sinusoids; stars, for the 2.09-c/deg pulse train; triangles, for the super train. The results are for detection experiments (pedestal contrast of 0%) for observer CMB; each data point is based on 100 observations. Contrasts reported for both pulse trains are those of their 2.09-c/deg sinusoidal components. The solid curves are the best (maximum-likelihood) Weibell functions fitted to each data set. (b) As for (a), but for observer GBH.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PY0(y)=a02+n=1ancos nω0 y,
ω0=2π/Y0,an=(2/Y0)-Y0/2Y0/2PY0(y)cos nω0 ydy.
an=1BY0-BBcos nω0ydy=2Y0sin(nωB)nωB.

Metrics