Abstract

We examined contrast sensitivity and suprathreshold apparent contrast with natural images. The spatial-frequency components within single octaves of the images were removed (notch filtered), their phases were randomized, or the polarity of the images was inverted. Of Michelson contrast, root-mean-square (RMS) contrast, and band-limited contrast, RMS contrast was the best index of detectability. Negative images had lower apparent contrast than their positives. Contrast detection thresholds showed spatial-frequency-dependent elevation following both notch filtering and phase randomization. The peak of the spatial-frequency tuning function was approximately 0.5–2 cycles per degree (c/deg). Suprathreshold contrast matching functions also showed spatial-frequency-dependent contrast loss for both notch-filtered and phase-randomized images. The peak of the spatial-frequency tuning function was approximately 1–3 c/deg. There was no detectable difference between the effects of phase randomization and notch filtering on contrast sensitivity. We argue that these observations are consistent with changes in the activity within spatial-frequency channels caused by the higher-order phase structure of natural images that is responsible for the presence of edges and specularities.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  2. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  3. D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665–672 (1975).
    [CrossRef] [PubMed]
  4. J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
    [CrossRef] [PubMed]
  5. J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
    [CrossRef] [PubMed]
  6. O. Bryngdahl, “Characteristics of the visual system: psychophysical measurements of the response to spatial sine-wave stimuli in the photopic region,” J. Opt. Soc. Am. 56, 811–821 (1966).
    [CrossRef] [PubMed]
  7. A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
    [CrossRef] [PubMed]
  8. C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
    [CrossRef] [PubMed]
  9. M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).
  10. J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
    [CrossRef] [PubMed]
  11. M. W. Cannon, “Contrast sensation: a linear function of stimulus contrast,” Vision Res. 19, 1045–1052 (1979).
    [CrossRef] [PubMed]
  12. D. O. Bowker, “Suprathreshold spatiotemporal response characteristics of the human visual system,” J. Opt. Soc. Am. 73, 436–440 (1983).
    [CrossRef] [PubMed]
  13. R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
    [CrossRef]
  14. N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995).
    [CrossRef] [PubMed]
  15. A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).
  16. M. A. Georgeson, “Over the limit: Encoding contrast above threshold in human vision,” in Limits of Vision, J. J. Kulikowski, ed. (ErlbaumLondon, 1990) pp. 106–119.
  17. W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
    [CrossRef] [PubMed]
  18. W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
    [CrossRef] [PubMed]
  19. E. R. Kretzmer, “Statistics of television signals,” Bell Syst. Tech. J. 31, 751–763 (1952).
    [CrossRef]
  20. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987).
    [CrossRef] [PubMed]
  21. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
    [CrossRef] [PubMed]
  22. J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998).
    [CrossRef]
  23. D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
    [CrossRef] [PubMed]
  24. D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
    [CrossRef] [PubMed]
  25. A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996).
    [CrossRef] [PubMed]
  26. V. A. Billock, “Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system,” Physica D 137, 379–391 (2000).
    [CrossRef]
  27. F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
    [CrossRef] [PubMed]
  28. H. B. Barlow, “Possible principles underlying the transformations of sensory messages,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass.1961) pp. 217–234.
  29. S. B. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).
  30. M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
    [CrossRef]
  31. J. H. Van Hateren, “Real and optimal neural images in early vision,” Nature 360, 68–70 (1992).
    [CrossRef] [PubMed]
  32. C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
    [CrossRef] [PubMed]
  33. D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000).
    [CrossRef]
  34. M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
    [CrossRef]
  35. E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001).
    [CrossRef] [PubMed]
  36. K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
    [CrossRef] [PubMed]
  37. B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
    [CrossRef] [PubMed]
  38. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
    [CrossRef] [PubMed]
  39. D. G. Pelli, “The Videotoolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
    [CrossRef] [PubMed]
  40. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  41. W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  42. A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  43. A. Naiman, W. Makous, “Spatial non-linearities of grayscale CRT pixels,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed., Proc. SPIE1666, 41–56 (1992).
    [CrossRef]
  44. T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
    [CrossRef] [PubMed]
  45. C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998).
    [CrossRef]
  46. R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
    [CrossRef] [PubMed]
  47. A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
    [CrossRef]
  48. C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  49. N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971).
    [CrossRef] [PubMed]
  50. E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
    [CrossRef] [PubMed]
  51. M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
    [CrossRef] [PubMed]
  52. J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
    [CrossRef] [PubMed]
  53. N. Sekiguchi, D. R. Williams, D. H. Brainard , “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
    [CrossRef]
  54. J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997).
    [CrossRef] [PubMed]
  55. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
    [CrossRef]
  56. L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982).
    [CrossRef] [PubMed]
  57. J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).
  58. R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.
  59. M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
    [CrossRef]
  60. Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993).
    [CrossRef] [PubMed]
  61. M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988).
    [CrossRef]
  62. J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
    [CrossRef] [PubMed]
  63. D. C. Burr, “Sensitivity to spatial phase,” Vision Res. 20, 391–396 (1980).
    [CrossRef] [PubMed]
  64. D. R. Badcock, “Spatial phase or luminance profile discrimination?” Vision Res. 24, 613–623 (1984).
    [CrossRef] [PubMed]
  65. D. R. Badcock, “How do we discriminate relative spatial phase?” Vision Res. 24, 1847–1857 (1984).
    [CrossRef] [PubMed]
  66. M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
    [CrossRef] [PubMed]
  67. I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985).
    [CrossRef] [PubMed]
  68. P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987).
    [CrossRef] [PubMed]
  69. P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

2001 (2)

E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001).
[CrossRef] [PubMed]

P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

2000 (4)

C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000).
[CrossRef]

M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
[CrossRef]

V. A. Billock, “Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system,” Physica D 137, 379–391 (2000).
[CrossRef]

1998 (3)

J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998).
[CrossRef]

A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).

C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998).
[CrossRef]

1997 (2)

D. G. Pelli, “The Videotoolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997).
[CrossRef] [PubMed]

1996 (2)

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996).
[CrossRef] [PubMed]

1995 (2)

N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995).
[CrossRef] [PubMed]

J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

1994 (2)

K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
[CrossRef] [PubMed]

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

1993 (3)

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, D. H. Brainard , “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993).
[CrossRef] [PubMed]

1992 (3)

A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
[CrossRef]

D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
[CrossRef] [PubMed]

J. H. Van Hateren, “Real and optimal neural images in early vision,” Nature 360, 68–70 (1992).
[CrossRef] [PubMed]

1991 (2)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
[CrossRef]

1990 (2)

B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
[CrossRef] [PubMed]

E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990).
[CrossRef] [PubMed]

1989 (1)

M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
[CrossRef] [PubMed]

1988 (2)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988).
[CrossRef]

W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
[CrossRef] [PubMed]

1987 (5)

G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987).
[CrossRef] [PubMed]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
[CrossRef] [PubMed]

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987).
[CrossRef] [PubMed]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

1986 (1)

T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
[CrossRef] [PubMed]

1985 (1)

I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985).
[CrossRef] [PubMed]

1984 (3)

D. R. Badcock, “Spatial phase or luminance profile discrimination?” Vision Res. 24, 613–623 (1984).
[CrossRef] [PubMed]

D. R. Badcock, “How do we discriminate relative spatial phase?” Vision Res. 24, 1847–1857 (1984).
[CrossRef] [PubMed]

W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
[CrossRef] [PubMed]

1983 (2)

D. O. Bowker, “Suprathreshold spatiotemporal response characteristics of the human visual system,” J. Opt. Soc. Am. 73, 436–440 (1983).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1982 (3)

L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982).
[CrossRef] [PubMed]

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
[CrossRef]

1981 (2)

S. B. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

1980 (1)

D. C. Burr, “Sensitivity to spatial phase,” Vision Res. 20, 391–396 (1980).
[CrossRef] [PubMed]

1979 (1)

M. W. Cannon, “Contrast sensation: a linear function of stimulus contrast,” Vision Res. 19, 1045–1052 (1979).
[CrossRef] [PubMed]

1978 (1)

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

1976 (1)

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef] [PubMed]

1975 (3)

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665–672 (1975).
[CrossRef] [PubMed]

J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

1973 (1)

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

1971 (1)

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

1969 (1)

C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

1968 (2)

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

1966 (1)

1965 (1)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

1954 (1)

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

1952 (1)

E. R. Kretzmer, “Statistics of television signals,” Bell Syst. Tech. J. 31, 751–763 (1952).
[CrossRef]

Armstrong, K. E.

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

Attneave, F.

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

Badcock, D. R.

D. R. Badcock, “Spatial phase or luminance profile discrimination?” Vision Res. 24, 613–623 (1984).
[CrossRef] [PubMed]

D. R. Badcock, “How do we discriminate relative spatial phase?” Vision Res. 24, 1847–1857 (1984).
[CrossRef] [PubMed]

Banks, M. S.

P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987).
[CrossRef] [PubMed]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

Barlow, H. B.

H. B. Barlow, “Possible principles underlying the transformations of sensory messages,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass.1961) pp. 217–234.

Bennett, P. J.

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987).
[CrossRef] [PubMed]

Bex, P. J.

P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).

Bialek, W.

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Billock, V. A.

V. A. Billock, “Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system,” Physica D 137, 379–391 (2000).
[CrossRef]

Bilsen, F. A.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Blakemore, C.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Bowker, D. O.

Brady, N.

N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995).
[CrossRef] [PubMed]

Brainard, D. H.

Bretel, J.

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

Bryngdahl, O.

Burr, D. C.

M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988).
[CrossRef]

T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
[CrossRef] [PubMed]

D. C. Burr, “Sensitivity to spatial phase,” Vision Res. 20, 391–396 (1980).
[CrossRef] [PubMed]

Burton, G. J.

Caelli, T.

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Campbell, F. W.

L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982).
[CrossRef] [PubMed]

C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Cannon, M. W.

M. W. Cannon, “Contrast sensation: a linear function of stimulus contrast,” Vision Res. 19, 1045–1052 (1979).
[CrossRef] [PubMed]

Carman, N.

A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
[CrossRef]

Chao, T.

D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
[CrossRef] [PubMed]

Chaudhuri, A.

C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998).
[CrossRef]

Dubs, A.

M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
[CrossRef]

Field, D. J.

N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995).
[CrossRef] [PubMed]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Foster, D. H.

M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
[CrossRef]

Gatley, L. F.

B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
[CrossRef] [PubMed]

Geisler, W. S.

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

Georgeson, M. A.

W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
[CrossRef] [PubMed]

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

M. A. Georgeson, “Over the limit: Encoding contrast above threshold in human vision,” in Limits of Vision, J. J. Kulikowski, ed. (ErlbaumLondon, 1990) pp. 106–119.

Giese, S. C.

W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
[CrossRef] [PubMed]

Graham, N.

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Grossberg, S.

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Hayes, A.

M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
[CrossRef]

Hayes, T.

T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
[CrossRef] [PubMed]

Hess, R. F.

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Hill, H.

A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
[CrossRef]

Hilz, R.

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

Hiwatashi, K.

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

Hoekstra, J.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Howell, E. R.

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Johnston, A.

A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
[CrossRef]

Kelly, D. H.

D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665–672 (1975).
[CrossRef] [PubMed]

Kemp, R.

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

Kingdom, F.

B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
[CrossRef] [PubMed]

Kretzmer, E. R.

E. R. Kretzmer, “Statistics of television signals,” Bell Syst. Tech. J. 31, 751–763 (1952).
[CrossRef]

Kulikowski, J. J.

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef] [PubMed]

Laughlin, S. B.

M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
[CrossRef]

S. B. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).

Lim, J. S.

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Liu, C. H.

C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998).
[CrossRef]

Makous, W.

P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).

J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997).
[CrossRef] [PubMed]

J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

A. Naiman, W. Makous, “Spatial non-linearities of grayscale CRT pixels,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed., Proc. SPIE1666, 41–56 (1992).
[CrossRef]

Metha, A. B.

A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).

Moorhead, I. R.

Morgan, M. J.

M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
[CrossRef]

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Mori, T.

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

Morrone, M. C.

M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988).
[CrossRef]

T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
[CrossRef] [PubMed]

Moulden, B.

B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
[CrossRef] [PubMed]

Muncey, J. P. J.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

Musselman, A.

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

Mustonen, J.

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Nachmias, J.

J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Nagata, S.

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

Naiman, A.

A. Naiman, W. Makous, “Spatial non-linearities of grayscale CRT pixels,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed., Proc. SPIE1666, 41–56 (1992).
[CrossRef]

Näsänen, R.

K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
[CrossRef] [PubMed]

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Olshauser, B. A.

E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001).
[CrossRef] [PubMed]

Oppenheim, A. V.

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Parraga, C. A.

C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
[CrossRef] [PubMed]

Peli, E.

Pelli, D. G.

D. G. Pelli, “The Videotoolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Pike, G.

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

Piotrowski, L. N.

L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Qi, X.

J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

Rentschler, I.

I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985).
[CrossRef] [PubMed]

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Ridley, R. M.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

Robson, J. G.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Ross, J.

M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
[CrossRef]

Rovamo, J.

K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
[CrossRef] [PubMed]

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Ruderman, D. L.

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Sekiguchi, N.

Shapley, R.

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Simoncelli, E. P.

E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001).
[CrossRef] [PubMed]

Spinelli, D.

M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
[CrossRef] [PubMed]

Srinivansan, M. V.

M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
[CrossRef]

St. John, R.

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

Sullivan, G. D.

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

Summers, R. J.

M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
[CrossRef]

Swanson, W. H.

W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
[CrossRef] [PubMed]

W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
[CrossRef] [PubMed]

Szpak, A. B.

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

Tadmor, Y.

D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
[CrossRef] [PubMed]

Teukolsky, A. A.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Thomson, M. G. A.

M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
[CrossRef]

Tiippana, K.

K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
[CrossRef] [PubMed]

Timney, B.

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

Tolhurst, D. J.

C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
[CrossRef] [PubMed]

Treutwein, B.

I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985).
[CrossRef] [PubMed]

Troscianko, T.

C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
[CrossRef] [PubMed]

Van den Brink, G.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Van der Goot, D. P. J.

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

van der Schaaf, A.

J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998).
[CrossRef]

A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996).
[CrossRef] [PubMed]

van Hateren, J. H.

J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998).
[CrossRef]

A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996).
[CrossRef] [PubMed]

J. H. Van Hateren, “Real and optimal neural images in early vision,” Nature 360, 68–70 (1992).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Watanabe, A.

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Weber, A.

J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
[CrossRef] [PubMed]

White, P.

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, H. R.

W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
[CrossRef] [PubMed]

W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
[CrossRef] [PubMed]

Yang, J.

J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997).
[CrossRef] [PubMed]

J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Annu. Rev. Neurosci. (1)

E. P. Simoncelli, B. A. Olshauser, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. R. Kretzmer, “Statistics of television signals,” Bell Syst. Tech. J. 31, 751–763 (1952).
[CrossRef]

Biol. Cybern. (1)

M. J. Morgan, J. Ross, A. Hayes, “The relative importance of local phase and local amplitude in patchwise image-reconstruction,” Biol. Cybern. 65, 113–119 (1991).
[CrossRef]

Curr. Biol. (1)

C. A. Parraga, T. Troscianko, D. J. Tolhurst, “The human visual system is optimised for processing the spatial information in natural visual images,” Curr. Biol. 10, 35–38 (2000).
[CrossRef] [PubMed]

Hum. Neurobiol. (1)

J. Bretel, T. Caelli, R. Hilz, I. Rentschler, “Modelling perceptual distortion: Amplitude and phase transmission in the human visual system,” Hum. Neurobiol. 1, 61–67 (1982).

Invest. Ophthalmol. Visual Sci. (1)

A. B. Metha, P. J. Bex, W. Makous, “Contrast constancy requires discriminable spatial frequency content,” Invest. Ophthalmol. Visual Sci. 39, Suppl. S424 (1998).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

P. J. Bex, W. Makous, “Contrast perception in natural images,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S616 (2001).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (4)

C. Blakemore, F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Nature (3)

J. H. Van Hateren, “Real and optimal neural images in early vision,” Nature 360, 68–70 (1992).
[CrossRef] [PubMed]

I. Rentschler, B. Treutwein, “Loss of spatial phase relationships in extrafoveal vision,” Nature 313, 308–310 (1985).
[CrossRef] [PubMed]

P. J. Bennett, M. S. Banks, “Sensitivity loss in odd-symmetric mechanisms and phase anomalies in peripheral vision,” Nature 326, 873–876 (1987).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

D. J. Tolhurst, Y. Tadmor, T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

A. B. Watson, D. G. Pelli, “QUEST: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Perception (8)

B. Moulden, F. Kingdom, L. F. Gatley, “The standard deviation of luminance as a metric for contrast in random-dot images,” Perception 19, 79–101 (1990).
[CrossRef] [PubMed]

T. Hayes, M. C. Morrone, D. C. Burr, “Recognition of positive and negative bandpass-filtered images,” Perception 15, 595–602 (1986).
[CrossRef] [PubMed]

C. H. Liu, A. Chaudhuri, “Are there qualitative differences between face processing in photographic positive and negative?” Perception 27, 1107–1122 (1998).
[CrossRef]

R. Kemp, G. Pike, P. White, A. Musselman, “Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues,” Perception 25, 37–52 (1996).
[CrossRef] [PubMed]

A. Johnston, H. Hill, N. Carman, “Recognizing faces: effects of lighting direction, inversion, and brightness reversal,” Perception 21, 365–375 (1992).
[CrossRef]

L. N. Piotrowski, F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–46 (1982).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, “Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural scenes,” Perception 29, 1087–1100 (2000).
[CrossRef]

M. G. A. Thomson, D. H. Foster, R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Physica D (1)

V. A. Billock, “Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system,” Physica D 137, 379–391 (2000).
[CrossRef]

Proc. IEEE (1)

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Proc. R. Soc. London Ser. B (3)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London Ser. B 235, 221–245 (1988).
[CrossRef]

M. V. Srinivansan, S. B. Laughlin, A. Dubs, “Predictive coding: a fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982).
[CrossRef]

J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998).
[CrossRef]

Psychol. Rev. (1)

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

Spatial Vision (2)

D. G. Pelli, “The Videotoolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

R. St. John, B. Timney, K. E. Armstrong, A. B. Szpak, “Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency,” Spatial Vision 2, 223–232 (1987).
[CrossRef]

Vision Res. (24)

N. Brady, D. J. Field, “What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns,” Vision Res. 35, 739–756 (1995).
[CrossRef] [PubMed]

W. H. Swanson, H. R. Wilson, S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63–75 (1984).
[CrossRef] [PubMed]

W. H. Swanson, M. A. Georgeson, H. R. Wilson, “Comparison of contrast responses across spatial mechanisms,” Vision Res. 28, 457–459 (1988).
[CrossRef] [PubMed]

D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665–672 (1975).
[CrossRef] [PubMed]

J. Hoekstra, D. P. J. Van der Goot, G. Van den Brink, F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

J. Yang, X. Qi, W. Makous, “Zero frequency masking and a model of contrast sensitivity,” Vision Res. 35, 1965–1978 (1995).
[CrossRef] [PubMed]

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef] [PubMed]

M. W. Cannon, “Contrast sensation: a linear function of stimulus contrast,” Vision Res. 19, 1045–1052 (1979).
[CrossRef] [PubMed]

A. Watanabe, T. Mori, S. Nagata, K. Hiwatashi, “Spatial sine wave responses of the human visual system,” Vision Res. 8, 1245–1263 (1968).
[CrossRef] [PubMed]

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

K. Tiippana, R. Näsänen, J. Rovamo, “Contrast matching of two-dimensional compound gratings,” Vision Res. 34, 1157–1163 (1994).
[CrossRef] [PubMed]

A. van der Schaaf, J. H. van Hateren, “Modelling the power spectra of natural images: Statistics and information,” Vision Res. 36, 2759–2770 (1996).
[CrossRef] [PubMed]

J. Nachmias, A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
[CrossRef] [PubMed]

D. C. Burr, “Sensitivity to spatial phase,” Vision Res. 20, 391–396 (1980).
[CrossRef] [PubMed]

D. R. Badcock, “Spatial phase or luminance profile discrimination?” Vision Res. 24, 613–623 (1984).
[CrossRef] [PubMed]

D. R. Badcock, “How do we discriminate relative spatial phase?” Vision Res. 24, 1847–1857 (1984).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, D. Spinelli, “Discrimination of spatial phase in central and peripheral vision,” Vision Res. 29, 433–445 (1989).
[CrossRef] [PubMed]

Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Implicit masking constrained by spatial inhomogeneities,” Vision Res. 37, 1917–1927 (1997).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

E. R. Howell, R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

M. S. Banks, W. S. Geisler, P. J. Bennett, “The physical limits of grating visibility,” Vision Res. 27, 1915–1924 (1987).
[CrossRef] [PubMed]

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Z. Naturforsch. Teil C (1)

S. B. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).

Other (5)

H. B. Barlow, “Possible principles underlying the transformations of sensory messages,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass.1961) pp. 217–234.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

M. A. Georgeson, “Over the limit: Encoding contrast above threshold in human vision,” in Limits of Vision, J. J. Kulikowski, ed. (ErlbaumLondon, 1990) pp. 106–119.

A. Naiman, W. Makous, “Spatial non-linearities of grayscale CRT pixels,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed., Proc. SPIE1666, 41–56 (1992).
[CrossRef]

R. Shapley, T. Caelli, S. Grossberg, M. J. Morgan, I. Rentschler, “Computational thories of visual perception,” in Visual Perception: The Neurophysiological Foundations, L. Spillman, J. S. Werner, eds. (Academic, New York, 1990), pp. 417–448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Examples of the stimuli. The images on the left (a, d, g, j) show four images representative of the ten used in the experiments. Each is followed by two versions of the same image after phase randomization (b, e, h, k), notch filtering (c, f, i), or contrast polarity reversal (l). The center frequency (in cycles per degree) of the one-octave filter is shown in the insets, where relevant (white text). For image k, the phases of all components were randomized. See Section 2 for details.

Fig. 2
Fig. 2

(a) Frequency distribution of the slopes of the amplitude spectra of 216 calibrated natural images selected at random from http://hlab.phys.rug.nl/archive.html. Frequency distribution of (b) the Michelson contrasts and (c) the RMS contrasts of these images, when scaled to maximize contrast.

Fig. 3
Fig. 3

Relative contrast detection thresholds for one of the authors (PB). The data show the detection threshold contrast relative to that for an unfiltered image (dc removed), averaged over the ten images. Relative contrast is obtained by dividing each threshold by the threshold for the same image without filtering. Squares show relative thresholds for notch filtered images (all components within a single octave were removed); circles show relative thresholds for phase-randomized images (the phases of all components within a single octave were randomized). The x axis shows the center frequency of the one-octave filter. Solid symbols indicate data points that are significantly different from unity (i.e., equal threshold contrast). Error bars show ±1 standard error of the mean. Relative thresholds are shown for Michelson contrast in the upper panel, RMS contrast in the middle panel, and scaling contrast in the lower panel.

Fig. 4
Fig. 4

Same as Fig. 3, for a naı̈ve observer (AS). Triangles show relative thresholds for phase-randomized images for an additional naı̈ve observer.

Fig. 5
Fig. 5

Relative contrast matches for one of the authors (PB). The data show the inverse of the relative contrast of an unfiltered image (dc removed) that matched that of a filtered image of 50% Michelson contrast, averaged over the ten images. The inverse facilitates comparison with Figs. 3 and 4. Squares show relative apparent contrast of notch-filtered images; circles show relative apparent contrast of phase-randomized images. The x axis shows the center frequency of the one-octave filter. Solid symbols indicate data points that are significantly different from unity (i.e., equal apparent contrast). Error bars show ±1 standard error of the mean. Relative apparent contrasts are shown for Michelson contrast in the upper panel, RMS contrast in the middle panel, and scaling contrast in the lower panel.

Fig. 6
Fig. 6

Same as Fig. 5, for a naı̈ve observer.

Tables (2)

Tables Icon

Table 1 Correlation of Observer Sensitivities and Values of Contrast

Tables Icon

Table 2 Comparison of Positive and Negative Image Contrast

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ampl(f )=cf-α,
CM=Lmax-LminLmax+Lmin.
Crms=L(x, y)2-L(x, y)2NN1/2.
CL(x, y)=Lb(x, y)Ll(x, y).
Cbl=CL(x, y)¯.
amplf=(rf2+if2)1/2,
ρf=a tan(if/rf),
rf=amplf×cos ρf,
if=amplf×sin ρf,
L(x, y)=50+CM×50×(x, y)max[abs(x, y)].

Metrics