Abstract

The Stiles–Crawford effect (SCE) of the first kind has often been considered to be important to spatial visual performance in that it ameliorates the influence of defocus and aberrations. We investigated the influence of SCE apodization on visual acuity as a function of defocus (out to ±2 D) in four subjects. We used optical filters, conjugate with the eye’s entrance pupil, that neutralized or doubled the existing SCE. With an illiterate-E task, the influence of the SCE was more noticeable for myopic defocus than for hypermetropic defocus, was generally more noticeable for high-contrast than for low-contrast letters, and increased with increase in pupil size. The greatest influence on visual acuity of neutralizing the SCE, across the subjects and range of conditions, was deterioration of 0.06 (4-mm pupil), 0.16 (6-mm pupil), and 0.29 log unit (7.6-mm pupil).

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933).
    [CrossRef]
  2. J. M. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), pp. 280–309.
  3. J. C. He, S. Marcos, S. A. Burns, “Comparison of photodirectionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363–2369 (1999).
    [CrossRef]
  4. Y. Le Grand, Lumière et Couleurs, Vol. 2 of Optique Physiologique (Revue d’Optique Théorique et Instrumentale, Paris, 1948); English translation by R. W. G. Hunt, J. W. T. Walsh, F. R. W. Hunt, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968), pp. 103–108.
  5. L. C. Martin, Technical Optics, 1st ed. (Pitman, London, 1948), Vol. 2.
  6. D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
    [CrossRef] [PubMed]
  7. J. Tucker, W. N. Charman, “The depth-of-focus of the human eye for Snellen letters,” Am. J. Optom. Physiol. Opt. 52, 3–21 (1975).
    [CrossRef] [PubMed]
  8. F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
    [CrossRef]
  9. G. E. Legge, K. T. Mullen, G. C. Woo, F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851–863 (1987).
    [CrossRef] [PubMed]
  10. P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
    [CrossRef] [PubMed]
  11. F. W. Campbell, “A retinal acuity direction effect,” J. Physiol. (London) 144, 25P–26P (1958).
  12. G. Westheimer, “Retinal light distribution for circular apertures in Maxwellian view,” J. Opt. Soc. Am. 49, 41–44 (1959).
    [CrossRef] [PubMed]
  13. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
    [CrossRef]
  14. D. A. Atchison, “Visual optics in man,” Aust. J. Optom. 67, 141–150 (1984).
  15. P. Artal, “Incorporation of directional effects of the retina into computations of the modulation transfer function of human eyes,” J. Opt. Soc. Am. A 6, 1941–1944 (1989).
    [CrossRef] [PubMed]
  16. D. A. Atchison, A. Joblin, G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
    [CrossRef]
  17. X. Zhang, M. Ye, A. Bradley, L. N. Thibos, “`Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 1–9 (1999).
    [CrossRef]
  18. M. C. Rynders, “The Stiles–Crawford effect and an experimental determination of its impact on vision,” Ph.D. thesis (School of Optometry, Indiana University, 800 East Atwater, Bloomington, Indiana 47405, 1994).
  19. M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
    [CrossRef]
  20. D. A. Atchison, D. H. Scott, “The Stiles–Crawford effect and subjective measurement of transverse aberrations,” Vision Res.42 (to be published).
  21. D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
    [CrossRef] [PubMed]
  22. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave aberrations of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  23. L. N. Thibos, M. Ye, X. Xhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  24. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  25. Results for subjects DAA and DHS in Table 1, in Table 2(SCE-neutralizing filter only) and Table 3(SCE-neutralized condition) have been given previously in Ref. 20.
  26. R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
    [CrossRef] [PubMed]
  27. D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2002), p. 24.
  28. P. Moon, D. E. Spencer, “On the Stiles–Crawford effect,” J. Opt. Soc. Am. 34, 319–329 (1944).
    [CrossRef]
  29. S. G. De Groot, J. W. Gebhard, “Pupil size as determined by adapting luminance,” J. Opt. Soc. Am. 42, 492–495 (1920).
    [CrossRef]
  30. B. H. Crawford, “The dependence of pupil size upon external light stimulus under static and variable conditions,” Proc. R. Soc. London Ser. B 121, 376–395 (1936).
    [CrossRef]
  31. P. Reeves, “Rate of pupillary dilation and contraction,” Psychol. Rev. 25, 330–340 (1918).
    [CrossRef]
  32. P. Reeves, “`The response of the average pupil to various intensities of light,” J. Opt. Soc. Am. 4, 35–43 (1920).
    [CrossRef]
  33. J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
    [CrossRef] [PubMed]
  34. L. S. Kumnick, “Pupillary psychosensory restitution and aging,” J. Opt. Soc. Am. 44, 735–741 (1954).
    [CrossRef] [PubMed]
  35. V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
    [CrossRef]
  36. R. Leinhos, “Die Altersabhängigheit des Augenpupillendurchmessers,” Optik 16, 669–671 (1959).
  37. F. S. Said, W. S. Sawires, “Age dependence of changes in pupil diameter in the dark,” Opt. Acta 19, 359–361 (1972).
    [CrossRef]
  38. B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).
  39. B. H. Crawford, “The luminous efficiency of light entering the eye pupil at different points and its relation to brightness threshold measurements,” Proc. R. Soc. London Ser. B 124, 81–96 (1937).
    [CrossRef]
  40. J. A. van Loo, J. M. Enoch, “The scotopic Stiles–Crawford effect,” Vision Res. 15, 1005–1009 (1975).
    [CrossRef] [PubMed]
  41. W. S. Stiles, “`The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
    [CrossRef]
  42. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
    [CrossRef]
  43. J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
    [CrossRef]
  44. W. Wijngaard, J. van Kruysbergen, “The function of the non-guided light in some explanations of the Stiles–Crawford effects,” in Photoreceptor Optics, A. H. Snyder, R. Menzel, eds. (Springer-Verlag, New York, 1975), pp. 175–183.
  45. M. Alpern, R. Tamaki, “The saturation of monochromatic lights obliquely incident on the retina,” J. Physiol. (London) 338, 669–691 (1983).
  46. D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
    [CrossRef] [PubMed]
  47. K. N. Ogle, T. J. Schwartz, “Depth of focus of the human eye,” J. Opt. Soc. Am. 49, 273–280 (1959).
    [CrossRef] [PubMed]
  48. W. N. Charman, H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211–1216 (1977).
    [CrossRef]
  49. S. Marcos, E. Moreno, R. Navarro, “`The depth-of-field of the human eye with polychromatic light from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
    [CrossRef] [PubMed]
  50. C. A. Johnson, E. J. Casson, “Effects of luminance, contrast and blur on visual acuity,” Optom. Vision Sci. 72, 864–869 (1995).
    [CrossRef]
  51. L. L. Sloan, “The photopic-acuity-luminance function with special reference to parafoveal vision,” Vision Res. 8, 901–911 (1968).
    [CrossRef] [PubMed]
  52. T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
    [CrossRef] [PubMed]
  53. A. Ho, S. M. Bilton, “Low contrast charts effectively differentiate between types of blur,” Am. J. Optom. Physiol. Opt. 63, 202–208 (1986).
    [CrossRef] [PubMed]

2001 (1)

D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
[CrossRef] [PubMed]

2000 (1)

D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (2)

1997 (1)

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

1996 (1)

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

1995 (1)

C. A. Johnson, E. J. Casson, “Effects of luminance, contrast and blur on visual acuity,” Optom. Vision Sci. 72, 864–869 (1995).
[CrossRef]

1994 (1)

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

1993 (1)

1992 (1)

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

1986 (2)

T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
[CrossRef] [PubMed]

A. Ho, S. M. Bilton, “Low contrast charts effectively differentiate between types of blur,” Am. J. Optom. Physiol. Opt. 63, 202–208 (1986).
[CrossRef] [PubMed]

1984 (1)

D. A. Atchison, “Visual optics in man,” Aust. J. Optom. 67, 141–150 (1984).

1983 (1)

M. Alpern, R. Tamaki, “The saturation of monochromatic lights obliquely incident on the retina,” J. Physiol. (London) 338, 669–691 (1983).

1979 (1)

D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
[CrossRef] [PubMed]

1977 (1)

W. N. Charman, H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211–1216 (1977).
[CrossRef]

1975 (2)

J. A. van Loo, J. M. Enoch, “The scotopic Stiles–Crawford effect,” Vision Res. 15, 1005–1009 (1975).
[CrossRef] [PubMed]

J. Tucker, W. N. Charman, “The depth-of-focus of the human eye for Snellen letters,” Am. J. Optom. Physiol. Opt. 52, 3–21 (1975).
[CrossRef] [PubMed]

1974 (1)

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

1972 (1)

F. S. Said, W. S. Sawires, “Age dependence of changes in pupil diameter in the dark,” Opt. Acta 19, 359–361 (1972).
[CrossRef]

1968 (1)

L. L. Sloan, “The photopic-acuity-luminance function with special reference to parafoveal vision,” Vision Res. 8, 901–911 (1968).
[CrossRef] [PubMed]

1961 (1)

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[CrossRef]

1959 (3)

1958 (2)

V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef]

F. W. Campbell, “A retinal acuity direction effect,” J. Physiol. (London) 144, 25P–26P (1958).

1957 (1)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

1954 (1)

1950 (1)

J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
[CrossRef] [PubMed]

1944 (1)

1939 (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

1937 (2)

W. S. Stiles, “`The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

B. H. Crawford, “The luminous efficiency of light entering the eye pupil at different points and its relation to brightness threshold measurements,” Proc. R. Soc. London Ser. B 124, 81–96 (1937).
[CrossRef]

1936 (1)

B. H. Crawford, “The dependence of pupil size upon external light stimulus under static and variable conditions,” Proc. R. Soc. London Ser. B 121, 376–395 (1936).
[CrossRef]

1933 (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933).
[CrossRef]

1920 (2)

1918 (1)

P. Reeves, “Rate of pupillary dilation and contraction,” Psychol. Rev. 25, 330–340 (1918).
[CrossRef]

Alpern, M.

M. Alpern, R. Tamaki, “The saturation of monochromatic lights obliquely incident on the retina,” J. Physiol. (London) 338, 669–691 (1983).

Applegate, R. A.

Artal, P.

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

P. Artal, “Incorporation of directional effects of the retina into computations of the modulation transfer function of human eyes,” J. Opt. Soc. Am. A 6, 1941–1944 (1989).
[CrossRef] [PubMed]

Atchison, D. A.

D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
[CrossRef] [PubMed]

D. A. Atchison, A. Joblin, G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
[CrossRef]

D. A. Atchison, “Visual optics in man,” Aust. J. Optom. 67, 141–150 (1984).

D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, “The Stiles–Crawford effect and subjective measurement of transverse aberrations,” Vision Res.42 (to be published).

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2002), p. 24.

Barbeito, R.

T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
[CrossRef] [PubMed]

Bedell, H. E.

T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
[CrossRef] [PubMed]

Bilton, S. M.

A. Ho, S. M. Bilton, “Low contrast charts effectively differentiate between types of blur,” Am. J. Optom. Physiol. Opt. 63, 202–208 (1986).
[CrossRef] [PubMed]

Birren, J. E.

J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
[CrossRef] [PubMed]

Botwinick, J.

J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
[CrossRef] [PubMed]

Bradley, A.

X. Zhang, M. Ye, A. Bradley, L. N. Thibos, “`Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 1–9 (1999).
[CrossRef]

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Xhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, F. W.

G. E. Legge, K. T. Mullen, G. C. Woo, F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851–863 (1987).
[CrossRef] [PubMed]

F. W. Campbell, “A retinal acuity direction effect,” J. Physiol. (London) 144, 25P–26P (1958).

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

Casperson, R. C.

J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
[CrossRef] [PubMed]

Casson, E. J.

C. A. Johnson, E. J. Casson, “Effects of luminance, contrast and blur on visual acuity,” Optom. Vision Sci. 72, 864–869 (1995).
[CrossRef]

Charman, W. N.

W. N. Charman, H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211–1216 (1977).
[CrossRef]

J. Tucker, W. N. Charman, “The depth-of-focus of the human eye for Snellen letters,” Am. J. Optom. Physiol. Opt. 52, 3–21 (1975).
[CrossRef] [PubMed]

Crawford, B. H.

B. H. Crawford, “The luminous efficiency of light entering the eye pupil at different points and its relation to brightness threshold measurements,” Proc. R. Soc. London Ser. B 124, 81–96 (1937).
[CrossRef]

B. H. Crawford, “The dependence of pupil size upon external light stimulus under static and variable conditions,” Proc. R. Soc. London Ser. B 121, 376–395 (1936).
[CrossRef]

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933).
[CrossRef]

De Groot, S. G.

Efron, N.

D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
[CrossRef] [PubMed]

Elliot, D. B.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Enoch, J. M.

J. A. van Loo, J. M. Enoch, “The scotopic Stiles–Crawford effect,” Vision Res. 15, 1005–1009 (1975).
[CrossRef] [PubMed]

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[CrossRef]

J. M. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), pp. 280–309.

Gebhard, J. W.

Green, D. G.

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

He, J. C.

Ho, A.

A. Ho, S. M. Bilton, “Low contrast charts effectively differentiate between types of blur,” Am. J. Optom. Physiol. Opt. 63, 202–208 (1986).
[CrossRef] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Iglesias, I.

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

Joblin, A.

Johnson, C. A.

C. A. Johnson, E. J. Casson, “Effects of luminance, contrast and blur on visual acuity,” Optom. Vision Sci. 72, 864–869 (1995).
[CrossRef]

Kadlecoka, V.

V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef]

Kumnick, L. S.

Lakshminarayanan, V.

R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
[CrossRef] [PubMed]

J. M. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), pp. 280–309.

Le Grand, Y.

Y. Le Grand, Lumière et Couleurs, Vol. 2 of Optique Physiologique (Revue d’Optique Théorique et Instrumentale, Paris, 1948); English translation by R. W. G. Hunt, J. W. T. Walsh, F. R. W. Hunt, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968), pp. 103–108.

Legge, G. E.

Leinhos, R.

R. Leinhos, “Die Altersabhängigheit des Augenpupillendurchmessers,” Optik 16, 669–671 (1959).

Lopéz-Gil, N.

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

Marcos, S.

S. Marcos, E. Moreno, R. Navarro, “`The depth-of-field of the human eye with polychromatic light from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[CrossRef] [PubMed]

J. C. He, S. Marcos, S. A. Burns, “Comparison of photodirectionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363–2369 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave aberrations of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

Martin, L. C.

L. C. Martin, Technical Optics, 1st ed. (Pitman, London, 1948), Vol. 2.

Moon, P.

Moreno, E.

S. Marcos, E. Moreno, R. Navarro, “`The depth-of-field of the human eye with polychromatic light from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[CrossRef] [PubMed]

Mullen, K. T.

Navarro, R.

S. Marcos, E. Moreno, R. Navarro, “`The depth-of-field of the human eye with polychromatic light from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[CrossRef] [PubMed]

Ogle, K. N.

Pejski, P. A.

D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
[CrossRef] [PubMed]

Peleska, M.

V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef]

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Reeves, P.

P. Reeves, “`The response of the average pupil to various intensities of light,” J. Opt. Soc. Am. 4, 35–43 (1920).
[CrossRef]

P. Reeves, “Rate of pupillary dilation and contraction,” Psychol. Rev. 25, 330–340 (1918).
[CrossRef]

Rynders, M. C.

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

M. C. Rynders, “The Stiles–Crawford effect and an experimental determination of its impact on vision,” Ph.D. thesis (School of Optometry, Indiana University, 800 East Atwater, Bloomington, Indiana 47405, 1994).

Said, F. S.

F. S. Said, W. S. Sawires, “Age dependence of changes in pupil diameter in the dark,” Opt. Acta 19, 359–361 (1972).
[CrossRef]

Sawires, W. S.

F. S. Said, W. S. Sawires, “Age dependence of changes in pupil diameter in the dark,” Opt. Acta 19, 359–361 (1972).
[CrossRef]

Schwartz, T. J.

Scott, D. H.

D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, “The Stiles–Crawford effect and subjective measurement of transverse aberrations,” Vision Res.42 (to be published).

Simpson, T. L.

T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
[CrossRef] [PubMed]

Sloan, L. L.

L. L. Sloan, “The photopic-acuity-luminance function with special reference to parafoveal vision,” Vision Res. 8, 901–911 (1968).
[CrossRef] [PubMed]

Smith, G.

D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
[CrossRef] [PubMed]

D. A. Atchison, A. Joblin, G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
[CrossRef]

D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
[CrossRef] [PubMed]

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2002), p. 24.

Spencer, D. E.

Stiles, W. S.

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[CrossRef]

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

W. S. Stiles, “`The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933).
[CrossRef]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Tamaki, R.

M. Alpern, R. Tamaki, “The saturation of monochromatic lights obliquely incident on the retina,” J. Physiol. (London) 338, 669–691 (1983).

Thibos, L. N.

X. Zhang, M. Ye, A. Bradley, L. N. Thibos, “`Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 1–9 (1999).
[CrossRef]

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Xhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Tucker, J.

J. Tucker, W. N. Charman, “The depth-of-focus of the human eye for Snellen letters,” Am. J. Optom. Physiol. Opt. 52, 3–21 (1975).
[CrossRef] [PubMed]

van Kruysbergen, J.

W. Wijngaard, J. van Kruysbergen, “The function of the non-guided light in some explanations of the Stiles–Crawford effects,” in Photoreceptor Optics, A. H. Snyder, R. Menzel, eds. (Springer-Verlag, New York, 1975), pp. 175–183.

van Loo, J. A.

J. A. van Loo, J. M. Enoch, “The scotopic Stiles–Crawford effect,” Vision Res. 15, 1005–1009 (1975).
[CrossRef] [PubMed]

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Vasko, A.

V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef]

Webb, R. H.

Westheimer, G.

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Whitefoot, H.

W. N. Charman, H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211–1216 (1977).
[CrossRef]

Wijngaard, W.

W. Wijngaard, J. van Kruysbergen, “The function of the non-guided light in some explanations of the Stiles–Crawford effects,” in Photoreceptor Optics, A. H. Snyder, R. Menzel, eds. (Springer-Verlag, New York, 1975), pp. 175–183.

Winn, B.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Woo, G. C.

Xhang, X.

Ye, M.

Zhang, X.

X. Zhang, M. Ye, A. Bradley, L. N. Thibos, “`Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 1–9 (1999).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (3)

J. Tucker, W. N. Charman, “The depth-of-focus of the human eye for Snellen letters,” Am. J. Optom. Physiol. Opt. 52, 3–21 (1975).
[CrossRef] [PubMed]

D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979).
[CrossRef] [PubMed]

A. Ho, S. M. Bilton, “Low contrast charts effectively differentiate between types of blur,” Am. J. Optom. Physiol. Opt. 63, 202–208 (1986).
[CrossRef] [PubMed]

Appl. Opt. (1)

Aust. J. Optom. (1)

D. A. Atchison, “Visual optics in man,” Aust. J. Optom. 67, 141–150 (1984).

Doc. Ophthalmol. Proc. Ser. (1)

M. C. Rynders, L. N. Thibos, A. Bradley, N. Lopéz-Gil, “Apodization neutralization: a new technique for investigating the impact of the Stiles–Crawford effect on visual function,” Doc. Ophthalmol. Proc. Ser. 60, 57–61 (1997).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

J. Gerontol. (1)

J. E. Birren, R. C. Casperson, J. Botwinick, “Age changes in pupil size,” J. Gerontol. 5, 216–221 (1950).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (2)

M. Alpern, R. Tamaki, “The saturation of monochromatic lights obliquely incident on the retina,” J. Physiol. (London) 338, 669–691 (1983).

F. W. Campbell, “A retinal acuity direction effect,” J. Physiol. (London) 144, 25P–26P (1958).

Nature (1)

V. Kadlecoka, M. Peleska, A. Vasko, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef]

Ophthalmic Physiol. Opt. (3)

D. H. Scott, D. A. Atchison, P. A. Pejski, “Description of a method for neutralising the Stiles–Crawford effect,” Ophthalmic Physiol. Opt. 21, 161–172 (2001).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, G. Smith, “Pupil photometric efficiency and effective centre,” Ophthalmic Physiol. Opt. 20, 501–503 (2000).
[CrossRef] [PubMed]

T. L. Simpson, R. Barbeito, H. E. Bedell, “The effect of optical blur on visual acuity for targets of different luminances,” Ophthalmic Physiol. Opt. 6, 279–281 (1986).
[CrossRef] [PubMed]

Opt. Acta (5)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

F. S. Said, W. S. Sawires, “Age dependence of changes in pupil diameter in the dark,” Opt. Acta 19, 359–361 (1972).
[CrossRef]

W. N. Charman, H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211–1216 (1977).
[CrossRef]

J. M. Enoch, W. S. Stiles, “The colour change of monochromatic light with retinal angle of incidence,” Opt. Acta 8, 329–358 (1961).
[CrossRef]

Optik (1)

R. Leinhos, “Die Altersabhängigheit des Augenpupillendurchmessers,” Optik 16, 669–671 (1959).

Optom. Vision Sci. (1)

C. A. Johnson, E. J. Casson, “Effects of luminance, contrast and blur on visual acuity,” Optom. Vision Sci. 72, 864–869 (1995).
[CrossRef]

Proc. R. Soc. London Ser. B (4)

B. H. Crawford, “The luminous efficiency of light entering the eye pupil at different points and its relation to brightness threshold measurements,” Proc. R. Soc. London Ser. B 124, 81–96 (1937).
[CrossRef]

B. H. Crawford, “The dependence of pupil size upon external light stimulus under static and variable conditions,” Proc. R. Soc. London Ser. B 121, 376–395 (1936).
[CrossRef]

W. S. Stiles, “`The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. London Ser. B 123, 90–118 (1937).
[CrossRef]

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[CrossRef]

Proc. R. Soc. London, Ser. B (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112, 428–450 (1933).
[CrossRef]

Psychol. Rev. (1)

P. Reeves, “Rate of pupillary dilation and contraction,” Psychol. Rev. 25, 330–340 (1918).
[CrossRef]

Vision Res. (5)

J. A. van Loo, J. M. Enoch, “The scotopic Stiles–Crawford effect,” Vision Res. 15, 1005–1009 (1975).
[CrossRef] [PubMed]

S. Marcos, E. Moreno, R. Navarro, “`The depth-of-field of the human eye with polychromatic light from objective and subjective measurements,” Vision Res. 39, 2039–2049 (1999).
[CrossRef] [PubMed]

P. Artal, S. Marcos, I. Iglesias, D. G. Green, “Optical modulation transfer and contrast sensitivity with decentred small pupils in the human eye,” Vision Res. 36, 3575–3586 (1996).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

L. L. Sloan, “The photopic-acuity-luminance function with special reference to parafoveal vision,” Vision Res. 8, 901–911 (1968).
[CrossRef] [PubMed]

Other (8)

Results for subjects DAA and DHS in Table 1, in Table 2(SCE-neutralizing filter only) and Table 3(SCE-neutralized condition) have been given previously in Ref. 20.

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2002), p. 24.

M. C. Rynders, “The Stiles–Crawford effect and an experimental determination of its impact on vision,” Ph.D. thesis (School of Optometry, Indiana University, 800 East Atwater, Bloomington, Indiana 47405, 1994).

Y. Le Grand, Lumière et Couleurs, Vol. 2 of Optique Physiologique (Revue d’Optique Théorique et Instrumentale, Paris, 1948); English translation by R. W. G. Hunt, J. W. T. Walsh, F. R. W. Hunt, Light, Colour and Vision, 2nd ed. (Chapman & Hall, London, 1968), pp. 103–108.

L. C. Martin, Technical Optics, 1st ed. (Pitman, London, 1948), Vol. 2.

J. M. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), pp. 280–309.

W. Wijngaard, J. van Kruysbergen, “The function of the non-guided light in some explanations of the Stiles–Crawford effects,” in Photoreceptor Optics, A. H. Snyder, R. Menzel, eds. (Springer-Verlag, New York, 1975), pp. 175–183.

D. A. Atchison, D. H. Scott, “The Stiles–Crawford effect and subjective measurement of transverse aberrations,” Vision Res.42 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Apparatus for measuring aberrations of the eye by a subjective vernier alignment technique, SCE and its adaptation for measuring visual acuity. PBS1 and PBS2, 90/10 pellicle beam splitters; L1 and L2, relay lenses; IR, illumination ring, FSM, front-surface mirror; VC, video camera; Mo1, monitor; EP, entrance pupil of eye; Ap1.0, 0.5-mm aperture; IF, 550-nm interference filters; CRO, cathode ray oscilloscope; RF, light source, diffuser, and reference target. Additional items for visual acuity: ND, neutral density filters; La, lenses to correct astigmatism; Ap, 4-mm, 6-mm or >7.6-mm apertures; Mo2, Sony Triniton monitor; F, position of SCE-neutralizing and SCE-doubling filters.

Fig. 2
Fig. 2

Visual acuity as a function of luminance for subject DAA for letters on a white background in the following situations: in-focus, 6-mm pupil, and high-contrast letters; in-focus, 6-mm pupil, and low-contrast letters; in-focus, 4-mm pupil, and high-contrast letters; +2 D defocus, 6-mm pupil, and high-contrast letters; -2 D defocus, 6-mm pupil and high-contrast letters. Slopes and correlation coefficients of linear fits are given.

Fig. 3
Fig. 3

Visual acuity (Logmar) as a function of luminance (cd/m2) for subject DHS for 6-mm pupils, in-focus, and both high- and low-contrast letters on a white background. Slopes and correlation coefficients of linear fits are given.

Fig. 4
Fig. 4

Visual acuity (Logmar) as a function of defocus (D) shown for the following conditions: SCE-neutralizing (open triangles), SCE-normal (solid circles joined by lines) and SCE-doubling (open squares). Error bars indicate standard deviations where these extend beyond the symbols. Differences between SCE-neutralized and SCE-normal conditions >0.050 log unit are indicated by an asterisk, and differences between SCE-doubled and SCE-normal conditions >0.050 log unit are indicated by a double asterisk. (a) subject DAA with 4-mm-diameter pupil and high-contrast letters on a white background, (b) subject DAA with 6-mm-diameter pupil and for both high- and low-contrast letters on a white background, (c) subject DAA with 7.6-mm-diameter pupil and high-contrast letters on a white background, (d) subject DAA with 6-mm-diameter pupil and high-contrast letters on a green background, (e) subject DHS with 6-mm-diameter pupil and for both high- and low-contrast letters on a white background.

Fig. 5
Fig. 5

MTFs for in-focus, -2 D defocus, and +2 D defocus and for the three SCE conditions. These are radial MTFs, obtained by averaging across all meridians. Medium solid curves indicate the SCE-neutralized condition, thick solid curves indicate the SCE-normal condition, and thin dashed curves indicate the SCE-doubled condition. Pupil diameter 6-mm. (a) DAA, monochromatic (550 nm), (b) DAA, polychromatic, (c) DHS, monochromatic (550 nm), (d) DHS, polychromatic.

Fig. 6
Fig. 6

Simulated high-contrast letter E retinal images for -2 D defocus (+0.5 logmar), in-focus (-0.1 logmar), and +2 D defocus (+0.65 logmar) combined with the three SCE conditions. Letter sizes <0.1 lu above threshold have been selected and the images scaled to be the same size. They have been cropped so that ∼1/4 of the images are shown. The images show the view of an observer looking at the retina from the front; the subject would perceive the E’s to be flipped vertically. Pupil diameter 6 mm, wavelength 550 nm. (a) DAA, (b) DHS.

Tables (4)

Tables Icon

Table 1 Measured SCE Functions for Subjects (Wavelength 575 nm), Showing Mean and 95% Confidence Limits

Tables Icon

Table 2 Measured Neutralizing and Doubling Filters (Wavelength=550 nm)

Tables Icon

Table 3 Subjects’ SCE Measurements with Neutralizing and Doubling Filters, Showing Mean and 95% Confidence Limits

Tables Icon

Table 4 Visual Acuity Corrections for the Effective Retinal Illuminance Differences of the Various SCE Conditions a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η(x, y)=η(xmax, ymax)×exp[-ρx(x-xmax)2-ρy(y-ymax)2],
E(Rp)=-Rp+Rp-Rp2-x2+Rp2-x2exp[-ρx(x-xmax)2-ρy(y-ymax)2]dydxπRp2.

Metrics