Abstract

A computational method, based on a moment solution to the discrete dipole approximation (DDA) interaction equations, is proposed for calculation of the T matrix of arbitrary-shaped particles. It is shown that the method will automatically provide the conservation-of-energy and origin-invariance properties required of the T matrix. Furthermore, the method is significantly faster than a T-matrix calculation by direct inversion of the DDA equations. Because the method retains the dipole lattice representation of the particle, it can be applied with relative ease to particles with irregular shapes—although in the same respect it will not automatically simplify for axisymmetric particles. Calculations of scattering matrix distributions, in fixed and random orientations, are made for tetrahedron, cylindrical, and prolate spheroid particle shapes and compared with DDA and extended boundary condition method results.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription