Abstract

Measurement of the eye’s wave aberrations has become fairly standard in recent years. However, most studies have not taken into account the possible influence of the polarization state of light on the wave aberration measurements. The birefringence properties of the eye’s optical components, in particular corneal birefringence, can be expected to have an effect on the wave aberration estimates obtained under different states of polarization for the measurement light. In the work described, we used a psychophysical aberrometer (the spatially resolved refractometer) to measure the effect of changes in the polarization state of the illumination light on the eye’s wave aberration estimates obtained in a single pass. We find, contrary to our initial expectation, that the polarization state of the measurement light has little influence on the measured wave aberration. For each subject, the differences in wave aberrations across polarization states were of the same order as the variability in aberrations across consecutive estimates of the wave front for the same polarization conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, Vol. 1: Visual Optics and Instrumentation, W. N. Charman, ed. (Macmillan, New York, 1991), pp. 310–325.
  2. H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
    [CrossRef]
  3. L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
    [CrossRef] [PubMed]
  4. G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  5. B. K. Pierscionek, R. A. Weale, “Investigation of the polarization optics of the living human cornea and lens with Purkinje images,” Appl. Opt. 37, 6845–6851 (1998).
    [CrossRef]
  6. J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
    [CrossRef] [PubMed]
  7. J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
    [CrossRef]
  8. J. M. Bueno, “Measurement of parameters of polarization in the living human eye using image polarimetry,” Vision Res. 40, 3791–3799 (2000).
    [CrossRef]
  9. H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8, 1788–1793 (1991).
    [CrossRef]
  10. J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).
  11. W. N. Charman, “Wavefront aberrations of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
    [CrossRef]
  12. S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16, S566–S569 (2000).
    [PubMed]
  13. J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  14. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  15. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  16. N. Lopez-Gil, H. C. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
    [CrossRef]
  17. R. Navarro, E. Moreno-Barriuso, “Laser raytracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
    [CrossRef]
  18. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
    [PubMed]
  19. F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  20. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1987).
  21. J. M. Bueno, P. Artal, “Polarization and retinal image quality estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
    [CrossRef]
  22. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular local wave-front distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  23. S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  24. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
    [CrossRef]
  25. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  26. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]

2001 (5)

J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

J. M. Bueno, P. Artal, “Polarization and retinal image quality estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

2000 (4)

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16, S566–S569 (2000).
[PubMed]

P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

J. M. Bueno, “Measurement of parameters of polarization in the living human eye using image polarimetry,” Vision Res. 40, 3791–3799 (2000).
[CrossRef]

1999 (4)

J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
[CrossRef]

N. Lopez-Gil, H. C. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser raytracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

1998 (4)

1997 (1)

1992 (1)

1991 (2)

W. N. Charman, “Wavefront aberrations of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8, 1788–1793 (1991).
[CrossRef]

1987 (1)

1981 (1)

L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

1953 (1)

H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
[CrossRef]

Aragon, J. L.

Artal, P.

Berrio, E.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1987).

Bour, L. F.

L. F. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, Vol. 1: Visual Optics and Instrumentation, W. N. Charman, ed. (Macmillan, New York, 1991), pp. 310–325.

Bour, L. J.

L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

Bueno, J. M.

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

J. M. Bueno, P. Artal, “Polarization and retinal image quality estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
[CrossRef]

J. M. Bueno, “Measurement of parameters of polarization in the living human eye using image polarimetry,” Vision Res. 40, 3791–3799 (2000).
[CrossRef]

J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
[CrossRef]

Burns, S. A.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16, S566–S569 (2000).
[PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Campbell, M. C. W.

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

Cardozo, N. J. Lopes

L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “Wavefront aberrations of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

de Vries, H. L.

H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
[CrossRef]

Goelz, S.

He, J. C.

Hofer, H.

Howland, H. C.

N. Lopez-Gil, H. C. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

Iglesias, I.

Jaronski, J. W.

J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

Jielof, R.

H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
[CrossRef]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

klein Brink, H. B.

Krinke, H. E.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

Liang, J. Z.

Lopez-Gil, N.

N. Lopez-Gil, H. C. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

Marcos, S.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

Moreno-Barriuso, E.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser raytracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

Mrochen, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

Navarro, R.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser raytracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

Penney, C. M.

Pierscionek, B. K.

Prieto, P. M.

Seiler, T.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

Singer, B.

Spoor, A.

H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
[CrossRef]

Thompson, K. P.

Van Blokland, G. J.

Vargas-Martin, F.

Verhelst, S. C.

Weale, R. A.

Webb, R. H.

Williams, D. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1987).

Appl. Opt. (2)

Invest. Ophthalmol. Visual Sci. Suppl. (1)

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vitro human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

J. Opt. Soc. Am. A (9)

H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8, 1788–1793 (1991).
[CrossRef]

J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
[CrossRef] [PubMed]

J. M. Bueno, P. Artal, “Polarization and retinal image quality estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
[CrossRef]

F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

J. Refract. Surg. (2)

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

S. A. Burns, “The spatially resolved refractometer,” J. Refract. Surg. 16, S566–S569 (2000).
[PubMed]

Ophthalmic Physiol. Opt. (1)

J. M. Bueno, J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Optom. Vision Sci. (2)

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

W. N. Charman, “Wavefront aberrations of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

Physica (Amsterdam) (1)

H. L. de Vries, A. Spoor, R. Jielof, “Properties of the eye with respect to polarized light,” Physica (Amsterdam) 19, 419–432 (1953).
[CrossRef]

Vision Res. (4)

L. J. Bour, N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
[CrossRef] [PubMed]

J. M. Bueno, “Measurement of parameters of polarization in the living human eye using image polarimetry,” Vision Res. 40, 3791–3799 (2000).
[CrossRef]

N. Lopez-Gil, H. C. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1987).

L. F. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, Vol. 1: Visual Optics and Instrumentation, W. N. Charman, ed. (Macmillan, New York, 1991), pp. 310–325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Zernike coefficients (in OSA standard order) for different polarization states of the illumination light: natural light, solid squares; horizontal linear, solid circles; 45° linear, open squares; vertical linear, open circles; right-hand circular, solid triangles; left-hand circular, open triangles. The error bars represent the standard deviation across the three runs under the same conditions.

Fig. 2
Fig. 2

Wave aberration maps from the Zernike coefficients in Fig. 1. Top row from left to right for each subject: natural, horizontal linear, and 45° linear light; bottom row: vertical linear, right-hand circular, and left-hand circular light. Contour line spacing is λ/2 except for subject SB (spacing is λ).

Fig. 3
Fig. 3

Effects of the polarization on the ray aberration for each pupil location. In each case the center of the cell represents the natural light ray aberration, which is taken as the origin. Differences in the ray aberrations for other polarization states are represented by the positions of the symbols: solid circles, horizontal linear; open circles, vertical linear; open squares, 45° linear; closed triangles, right-hand circular; open triangles, left-hand circular. Scale in each cell is different to make more visible the polarization effects. The thick line below each cell represents a normalized 1-mrad segment for comparison purposes. Crosses centered on two of the symbols in each cell represent the normalized 95% confidence interval for the ray aberration on the corresponding pupil location. Confidence intervals have been represented only for the two extreme polarization effects, i.e., for the two symbols farthest apart in each cell.

Metrics