Abstract

X-ray imaging in differential interference contrast (DIC) with submicrometer optical resolution was performed by using a twin zone plate (TZP) setup generating focal spots closely spaced within the TZP spatial resolution of 160 nm. Optical path differences introduced by the sample are recorded by a CCD camera in a standard full-field imaging and by an aperture photodiode in a standard scanning transmission x-ray microscope. Applying this x-ray DIC technique, we demonstrate for both the full-field imaging and scanning x-ray microscope methods a drastic increase in image contrast (approximately 20×) for a low-absorbing specimen, similar to the Nomarski DIC method for visible-light microscopy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Röntgen, “On a new kind of rays,” Nature (London) 53, 274–276 (1896).
    [CrossRef]
  2. H. Wolter, “Spiegelsysteme streifenen Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. (Leipzig) 6, 94–114 (1952).
    [CrossRef]
  3. J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
    [CrossRef] [PubMed]
  4. G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
    [CrossRef]
  5. C. Jacobsen, J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5 (suppl.), 650–653 (1998).
    [CrossRef] [PubMed]
  6. W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
    [CrossRef]
  7. R. Medenwaldt, E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974–2977 (1998).
    [CrossRef]
  8. D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
    [CrossRef] [PubMed]
  9. D. Rudolph, G. Schmahl, B. Niemann, “Amplitude and phase contrast in x-ray microscopy,” in Modern Microscopies, Techniques and Applications, A. Michette, P. Duke, eds. (Plenum, London, 1990), p. 59.
  10. G. Schneider, “Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75, 85–104 (1998).
    [CrossRef] [PubMed]
  11. G. Schmahl, D. Rudolph, P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232.
    [CrossRef]
  12. G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).
  13. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1995).
    [CrossRef]
  14. G. R. Morrison, A. R. Hare, R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.
  15. G. R. Morrison, B. Niemann, “Differential phase contrast x-ray microscopy,” in X-ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-85–I-94.
  16. H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
    [CrossRef]
  17. H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
    [CrossRef] [PubMed]
  18. M. Waddel, J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 251–267 (1999).
  19. F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
    [CrossRef]
  20. D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
    [CrossRef]
  21. T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
    [CrossRef] [PubMed]
  22. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
    [CrossRef]
  23. B. E. Allman, P. J. McMahon, J. B. Tiller, K. A. Nugent, D. Paganin, A. Barty, I. McNulty, S. P. Frigo, Y. Wang, C. C. Retsch, “Noninterferometric quantitative phase imaging with soft x rays,” J. Opt. Soc. Am. A 17, 1732–1743 (2000).
    [CrossRef]
  24. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  25. I. McNulty, “The future of x-ray holography,” Nucl. Instrum. Methods Phys. Res. A 347, 170–176 (1994).
    [CrossRef]
  26. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
    [CrossRef]
  27. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
    [CrossRef]
  28. P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
    [CrossRef]
  29. A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
    [CrossRef]
  30. A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.
  31. R. F. Stevens, “Zone plate interferometer,” J. Mod. Opt. 35, 75–79 (1988).
    [CrossRef]
  32. R. M. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
    [CrossRef] [PubMed]
  33. M. V. R. K. Murty, “Common path interferometer using Fresnel zone plates,” J. Opt. Soc. Am. A 53, 568–570 (1963).
    [CrossRef]
  34. F. Broder-Burztyn, D. Malacara-Hernandez, “Holographic interferometer to test optical surfaces,” Appl. Opt. 14, 2280–2282 (1975).
    [CrossRef]
  35. J. C. Fouere, C. Roychoudhuri, “A holographic, radial and lateral shear interferometer,” Opt. Commun. 12, 29–31 (1974).
    [CrossRef]
  36. H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
    [CrossRef]
  37. V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
    [CrossRef]
  38. T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
    [CrossRef]
  39. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
    [CrossRef]
  40. T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
    [CrossRef]
  41. J. Susini, R. Barrett, “The x-ray microscopy facility project at the ESRF,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-45–I-54.
  42. See, for example, http://www.esrf.fr .
  43. A. G. Michette, Optical Systems for Soft X-Rays (Plenum, New York, 1986).
  44. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge U. Press, Cambridge, UK, 1999).
  45. Z. Jaroszewicz, V. Moreno, S. Bara, “Interferometric alignment using parabolic and off-axis conical zone plates,” Appl. Opt. 29, 4614–4617 (1990).
    [CrossRef] [PubMed]
  46. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1991).
  47. S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
    [CrossRef]
  48. B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
    [CrossRef]
  49. M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
    [CrossRef]
  50. M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
    [CrossRef]
  51. E. Zeitler, M. G. R. Thomson, “Scanning electron microscopy,” Optik (Stuttgart) 31, 258–280 (1970).
  52. G. R. Morrison, “Some aspects of quantitative x-ray microscopy,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE1140, 41–49 (1989).
    [CrossRef]
  53. R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
    [CrossRef]
  54. C. Preza, “Rotational-diversity phase estimation from differential-interference-contrast microscopy images,” J. Opt. Soc. Am. A 17, 415–424 (2000).
    [CrossRef]

2001

T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
[CrossRef]

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

2000

1999

S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

M. Waddel, J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 251–267 (1999).

D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
[CrossRef]

1998

G. Schneider, “Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75, 85–104 (1998).
[CrossRef] [PubMed]

C. Jacobsen, J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5 (suppl.), 650–653 (1998).
[CrossRef] [PubMed]

R. Medenwaldt, E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974–2977 (1998).
[CrossRef]

1997

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

1996

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

1995

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
[CrossRef]

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1995).
[CrossRef]

H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

1994

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

I. McNulty, “The future of x-ray holography,” Nucl. Instrum. Methods Phys. Res. A 347, 170–176 (1994).
[CrossRef]

1992

V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
[CrossRef]

1990

1988

R. F. Stevens, “Zone plate interferometer,” J. Mod. Opt. 35, 75–79 (1988).
[CrossRef]

1980

H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
[CrossRef]

1977

H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[CrossRef] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

1975

1974

J. C. Fouere, C. Roychoudhuri, “A holographic, radial and lateral shear interferometer,” Opt. Commun. 12, 29–31 (1974).
[CrossRef]

R. M. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
[CrossRef] [PubMed]

1970

E. Zeitler, M. G. R. Thomson, “Scanning electron microscopy,” Optik (Stuttgart) 31, 258–280 (1970).

1963

M. V. R. K. Murty, “Common path interferometer using Fresnel zone plates,” J. Opt. Soc. Am. A 53, 568–570 (1963).
[CrossRef]

1952

H. Wolter, “Spiegelsysteme streifenen Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. (Leipzig) 6, 94–114 (1952).
[CrossRef]

1896

W. C. Röntgen, “On a new kind of rays,” Nature (London) 53, 274–276 (1896).
[CrossRef]

Allman, B. E.

Anderson, E.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Attwood, D.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge U. Press, Cambridge, UK, 1999).

Balhorn, R.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Bara, S.

Barrett, R.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

J. Susini, R. Barrett, “The x-ray microscopy facility project at the ESRF,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-45–I-54.

R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
[CrossRef]

Barty, A.

Baruchel, J.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1991).

Broder-Burztyn, F.

Bufiere, J.-I.

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

Burge, R. E.

G. R. Morrison, A. R. Hare, R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.

Cabrini, S.

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

Chapman, H. N.

H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
[CrossRef]

Chapman, J. N.

M. Waddel, J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 251–267 (1999).

Charalambous, P.

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

Cloetens, P.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Davis, T. J.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

Di Fabrizio, E.

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

Feder, R.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

Fouere, J. C.

J. C. Fouere, C. Roychoudhuri, “A holographic, radial and lateral shear interferometer,” Opt. Commun. 12, 29–31 (1974).
[CrossRef]

Frigo, S. P.

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

Gentili, M.

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

Guigay, J.-P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Gureyev, T. E.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

Guttmann, P.

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

G. Schmahl, D. Rudolph, P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232.
[CrossRef]

Hare, A. R.

G. R. Morrison, A. R. Hare, R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.

Hirano, K.

A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.

Howells, M.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Itai, Y.

A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.

Jacobsen, C.

C. Jacobsen, J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5 (suppl.), 650–653 (1998).
[CrossRef] [PubMed]

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
[CrossRef]

Jaroszewicz, Z.

Jochum, L.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Joyeux, D.

D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
[CrossRef]

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

Kaulich, B.

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
[CrossRef]

Kim, D. M.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

Kirz, J.

C. Jacobsen, J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5 (suppl.), 650–653 (1998).
[CrossRef] [PubMed]

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Laval-Jeantet, A. M.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Linares, J.

V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
[CrossRef]

Magowan, C.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Malacara-Hernandez, D.

Matsuura, S.

H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
[CrossRef]

McMahon, P. J.

McNulty, I.

Medecki, H.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Medenwaldt, R.

R. Medenwaldt, E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974–2977 (1998).
[CrossRef]

Meyer-Ilse, W.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Michette, A. G.

A. G. Michette, Optical Systems for Soft X-Rays (Plenum, New York, 1986).

Momose, A.

A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.

Moreno, V.

V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
[CrossRef]

Z. Jaroszewicz, V. Moreno, S. Bara, “Interferometric alignment using parabolic and off-axis conical zone plates,” Appl. Opt. 29, 4614–4617 (1990).
[CrossRef] [PubMed]

Moronne, M.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Morrison, G. R.

G. R. Morrison, B. Niemann, “Differential phase contrast x-ray microscopy,” in X-ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-85–I-94.

G. R. Morrison, A. R. Hare, R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.

G. R. Morrison, “Some aspects of quantitative x-ray microscopy,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE1140, 41–49 (1989).
[CrossRef]

Murty, M. V. R. K.

M. V. R. K. Murty, “Common path interferometer using Fresnel zone plates,” J. Opt. Soc. Am. A 53, 568–570 (1963).
[CrossRef]

Nakajima, K.

H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
[CrossRef]

Niemann, B.

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

G. R. Morrison, B. Niemann, “Differential phase contrast x-ray microscopy,” in X-ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-85–I-94.

D. Rudolph, G. Schmahl, B. Niemann, “Amplitude and phase contrast in x-ray microscopy,” in Modern Microscopies, Techniques and Applications, A. Michette, P. Duke, eds. (Plenum, London, 1990), p. 59.

Nugent, K. A.

Odet, C.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

Oestreich, S.

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
[CrossRef]

Paganin, D.

Pateyron, M.

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Peix, G.

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Perez, M. V.

V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
[CrossRef]

Peyrin, F.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Phalippou, D.

D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
[CrossRef]

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

Polack, F.

D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
[CrossRef]

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

Preza, C.

Retsch, C. C.

Romanato, F.

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

Röntgen, W. C.

W. C. Röntgen, “On a new kind of rays,” Nature (London) 53, 274–276 (1896).
[CrossRef]

Rose, H.

H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[CrossRef] [PubMed]

Roychoudhuri, C.

J. C. Fouere, C. Roychoudhuri, “A holographic, radial and lateral shear interferometer,” Opt. Commun. 12, 29–31 (1974).
[CrossRef]

Rudolph, D.

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

G. Schmahl, D. Rudolph, P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232.
[CrossRef]

D. Rudolph, G. Schmahl, B. Niemann, “Amplitude and phase contrast in x-ray microscopy,” in Modern Microscopies, Techniques and Applications, A. Michette, P. Duke, eds. (Plenum, London, 1990), p. 59.

Salome, M.

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
[CrossRef]

Salomé, M.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

Salome-Pateyron, M.

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

Sayre, D.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Schlenker, M.

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Schmahl, G.

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

D. Rudolph, G. Schmahl, B. Niemann, “Amplitude and phase contrast in x-ray microscopy,” in Modern Microscopies, Techniques and Applications, A. Michette, P. Duke, eds. (Plenum, London, 1990), p. 59.

G. Schmahl, D. Rudolph, P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232.
[CrossRef]

Schneider, G.

G. Schneider, “Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75, 85–104 (1998).
[CrossRef] [PubMed]

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

Smartt, R. M.

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Spanne, P.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

Spiller, E.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

Stevens, R. F.

R. F. Stevens, “Zone plate interferometer,” J. Mod. Opt. 35, 75–79 (1988).
[CrossRef]

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

Susini, J.

T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
[CrossRef]

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
[CrossRef]

R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
[CrossRef]

J. Susini, R. Barrett, “The x-ray microscopy facility project at the ESRF,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-45–I-54.

Svaloš, J.

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

Takeda, T.

A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.

Tanigawa, H.

H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
[CrossRef]

Thieme, J.

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

Thomson, M. G. R.

E. Zeitler, M. G. R. Thomson, “Scanning electron microscopy,” Optik (Stuttgart) 31, 258–280 (1970).

Tiller, J. B.

Uggerhøj, E.

R. Medenwaldt, E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974–2977 (1998).
[CrossRef]

Waddel, M.

M. Waddel, J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 251–267 (1999).

Wang, Y.

Wilhein, T.

T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
[CrossRef]

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

Wilkins, S. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

Williams, S.

H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1991).

Wolter, H.

H. Wolter, “Spiegelsysteme streifenen Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. (Leipzig) 6, 94–114 (1952).
[CrossRef]

Zeitler, E.

E. Zeitler, M. G. R. Thomson, “Scanning electron microscopy,” Optik (Stuttgart) 31, 258–280 (1970).

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1995).
[CrossRef]

Ann. Phys. (Leipzig)

H. Wolter, “Spiegelsysteme streifenen Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. (Leipzig) 6, 94–114 (1952).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Wilhein, B. Kaulich, E. Di Fabrizio, S. Cabrini, F. Romanato, J. Susini, “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2079–2081 (2001).
[CrossRef]

B. Kaulich, T. Wilhein, S. Oestreich, M. Salome, R. Barrett, J. Susini, E. Di Fabrizio, M. Gentili, P. Charalambous, “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061–4063 (1999).
[CrossRef]

J. Appl. Phys.

P. Cloetens, M. Salome-Pateyron, J.-I. Bufiere, G. Peix, J. Baruchel, F. Peyrin, M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997).
[CrossRef]

J. Mod. Opt.

R. F. Stevens, “Zone plate interferometer,” J. Mod. Opt. 35, 75–79 (1988).
[CrossRef]

V. Moreno, M. V. Perez, J. Linares, “Zone plates with initial phase shift for optical sensing,” J. Mod. Opt. 39, 2039–2052 (1992).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Med. Phys.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26, 2194–2204 (1999).
[CrossRef]

Nat. Struct. Biol.

C. Jacobsen, J. Kirz, “X-ray microscopy with synchrotron radiation,” Nat. Struct. Biol. 5 (suppl.), 650–653 (1998).
[CrossRef] [PubMed]

Nature (London)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature (London) 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature (London) 373, 595–598 (1995).
[CrossRef]

W. C. Röntgen, “On a new kind of rays,” Nature (London) 53, 274–276 (1896).
[CrossRef]

E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “Multilevel x-ray zone plates,” Nature (London) 401, 895 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

I. McNulty, “The future of x-ray holography,” Nucl. Instrum. Methods Phys. Res. A 347, 170–176 (1994).
[CrossRef]

Opt. Acta

H. Tanigawa, K. Nakajima, S. Matsuura, “Modified zone-plate interferometer for testing aspheric surfaces,” Opt. Acta 27, 1327–1334 (1980).
[CrossRef]

Opt. Commun.

J. C. Fouere, C. Roychoudhuri, “A holographic, radial and lateral shear interferometer,” Opt. Commun. 12, 29–31 (1974).
[CrossRef]

T. Wilhein, B. Kaulich, J. Susini, “Two zone plate interference contrast microscopy at 4 keV photon energy,” Opt. Commun. 193, 19–26 (2001).
[CrossRef]

Optik (Stuttgart)

E. Zeitler, M. G. R. Thomson, “Scanning electron microscopy,” Optik (Stuttgart) 31, 258–280 (1970).

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, B. Niemann, “Phase contrast x-ray microscopy studies,” Optik (Stuttgart) 97, 181–182 (1994).

M. Waddel, J. N. Chapman, “Linear imaging of strong phase objects using asymmetrical detectors in STEM,” Optik (Stuttgart) 54, 251–267 (1999).

Phys. Rev. Lett.

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, S. W. Wilkins, “X-ray image contrast from a simple phase object,” Phys. Rev. Lett. 74, 3173–3176 (1995).
[CrossRef] [PubMed]

Q. Rev. Biophys.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33–130 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, B. Niemann, “Phase contrast studies of biological specimen with the x-ray microscope at BESSY,” Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

R. Medenwaldt, E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974–2977 (1998).
[CrossRef]

F. Polack, D. Joyeux, J. Svaloš, D. Phalippou, “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Instrum. 66, 2180 (1995).
[CrossRef]

D. Joyeux, F. Polack, D. Phalippou, “An interferometric determination of the refractive part optical constants for carbon and silver across absorption edges,” Rev. Sci. Instrum. 70, 2921 (1999).
[CrossRef]

H. N. Chapman, C. Jacobsen, S. Williams, “Applications of a CCD detector in scanning transmission x-ray microscope,” Rev. Sci. Instrum. 66, 1332–1334 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434–1436 (1995).
[CrossRef]

S. Oestreich, B. Kaulich, J. Susini, “Single-movement fixed-exit channelcut x-ray monochromator based on pro-filed surfaces,” Rev. Sci. Instrum. 70, 1921–1925 (1999).
[CrossRef]

Science

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1995).
[CrossRef]

Synchr. Radiat. News

W. Meyer-Ilse, H. Medecki, L. Jochum, E. Anderson, D. Attwood, C. Magowan, R. Balhorn, M. Moronne, D. Rudolph, G. Schmahl, “New high-resolution zone-plate microscope at beamline 6.1 of the ALS,” Synchr. Radiat. News 8, 29–33 (1995).
[CrossRef]

Ultramicroscopy

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–349 (1977).
[CrossRef] [PubMed]

G. Schneider, “Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75, 85–104 (1998).
[CrossRef] [PubMed]

H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[CrossRef] [PubMed]

Other

G. R. Morrison, A. R. Hare, R. E. Burge, “Transmission microscopy with soft x-rays,” in Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference (Institute of Physics, Bristol, UK, 1987), pp. 333–336.

G. R. Morrison, B. Niemann, “Differential phase contrast x-ray microscopy,” in X-ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-85–I-94.

G. Schmahl, D. Rudolph, P. Guttmann, “Phase contrast x-ray microscopy experiments at the BESSY storage ring,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., Vol. 56 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988), pp. 228–232.
[CrossRef]

D. Rudolph, G. Schmahl, B. Niemann, “Amplitude and phase contrast in x-ray microscopy,” in Modern Microscopies, Techniques and Applications, A. Michette, P. Duke, eds. (Plenum, London, 1990), p. 59.

A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray microtomography: application to human cancerous tissues,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. II-207–II-211.

M. Pateyron, F. Peyrin, A. M. Laval-Jeantet, P. Spanne, P. Cloetens, G. Peix, “3D microtomography of cancerous bone samples using synchrotron radiation,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metterand, J. Beuel, eds., Proc. SPIE2708, 417–426 (1996).
[CrossRef]

G. R. Morrison, “Some aspects of quantitative x-ray microscopy,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE1140, 41–49 (1989).
[CrossRef]

R. Barrett, B. Kaulich, M. Salome, J. Susini, “Current status of the scanning x-ray microscope at the ESRF,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, D. Attwood, eds., AIP Conf. Proc.507, 458–463 (1999).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1991).

J. Susini, R. Barrett, “The x-ray microscopy facility project at the ESRF,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, E. Umbach, eds. (Springer-Verlag, Berlin, 1998), pp. I-45–I-54.

See, for example, http://www.esrf.fr .

A. G. Michette, Optical Systems for Soft X-Rays (Plenum, New York, 1986).

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge U. Press, Cambridge, UK, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

X-ray interference imaging with a twin zone plate (TZP). Beam splitting accomplished by ZP1 and ZP2 generates four waves in the image space. Apertures (not shown) block all combinations of diffraction orders other than (0, 1) and (1, 0), resulting in interference of two spherical waves originating from P1 and P2. The lateral displacement of P1 and P2 is of the same value, a, as that denoting the spacing of ZP1 and ZP2.

Fig. 2
Fig. 2

The limit for a spatially coherent illuminated field D equals the ZP diameter 2r when the source diameter d is given by the spatial resolution δ, assuming that the illuminating source is located close to the front focal plane (as for microscopy).

Fig. 3
Fig. 3

Illustration of effective radius reff of a TZP for calculations of desired monochromaticity and temporal coherence. ZP1 (ZP2)=first (second) ZP, for interference contrast x-ray microscopy, r=radius of the two identical ZPs, and Δx=lateral shift of the ZPs.

Fig. 4
Fig. 4

X-ray image of a W Siemens star taken with the full-field imaging microscope (TXM) in differential interference contrast (DIC) mode. The Siemens star with 20-µm diameter and 36 spokes with line widths varying from 2 to 0.1 µm served as a test specimen to measure the optical resolution. Periods of 320 nm could be resolved.

Fig. 5
Fig. 5

a, Optical scheme of the TXM used for the x-ray DIC imaging at the ID21 x-ray microscopy beamline of the European Synchrotron Radiation Facility. The x-ray beam from the source is monochromatized by a Si crystal monochromator (not included in the sketch) and focused by a condenser optic onto the sample. The TZP upstream of the sample generates a magnified image, which is detected by a CCD camera. b, Because of the small numerical aperture of the condenser illumination, the +1-order image is overlapped with the -1-order projection. Therefore a pinhole is aligned slightly off axis close to the sample in order to separate the +1 and -1 order. CS stands for central stop, and CZP refers to the condenser ZP.

Fig. 6
Fig. 6

Comparison of bright-field and DIC x-ray imaging. The images show 2-µm-thick poly(methyl methacrylate) (PMMA) test structures with 98.8% transmission at a photon energy of 4 keV. a, c, Bright-field images; b, d, DIC x-ray microscope images. Exposure time was 20 s, and field of view was 20 µm in diameter.

Fig. 7
Fig. 7

a, Three-dimensional plot of the letter “3” in 2-µm-thick PMMA resist as shown in Fig. 6b, which was derived from the x-ray image in Fig. 6d. b, Line scan across the letter as indicated in a, demonstrating the edge enhancement, which is typical for DIC imaging. To demonstrate the increase in image contrast, we plotted a line scan through the image of the same test structure in bright-field or absorption contrast (see Fig. 6a).

Fig. 8
Fig. 8

a, Bright-field; b, x-ray DIC image showing microscopic details of a wing of a moth. Exposure time was 20 s, and field of view was 20 µm in diameter.

Fig. 9
Fig. 9

Optical scheme of the scanning x-ray microscope (SXM) setup in DIC mode. CS is the central stop that blocks zero-order light, and OSA is the order-sorting aperture that blocks wave fronts other than (1, 0) and (0, 1).

Fig. 10
Fig. 10

a, Image of the +1 order of a single ZP. The image was acquired by raster-scanning a photodiode with a 50-µm aperture in front across the first-order cone of the single ZP. b, Corresponding image of the +1 order of the TZP with interference fringes that are due to the phase modulation by the two ZPs.

Fig. 11
Fig. 11

Line scan across the interference fringes in the +1 order of the TZP related to Fig. 10. The amplitude difference between bright and dark parts of the interference pattern is more than 4 orders of magnitude. Intensity is given in units of counts per second.

Fig. 12
Fig. 12

a, SXM image of a letter structure in 2-µm-thick PMMA in bright-field mode. The field of view is 20 μm×20 μm, the pixel size is 100 nm×100 nm, and the dwell time is 50 ms per pixel. The image contrast is 1.5%. b, Same structure in DIC mode with a contrast of 25%, proving that the x-ray DIC technique can also be applied to scanning transmission x-ray microscopy.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

fm=2rΔr/(λm)=r2/(λNm),
δm=[δi,m2+δr2+δc2]1/2=[(1.22Δr/m)2+δr2+(DΔE/E)2]1/2,
DOF=±2Δr2/λ.
(Δx/z)x+(Δy/z)y=sλ.
D=λz/(Δx2+Δy2)1/2,
Δx<2rΔr/p.
Δz<4Δr2/λ.
D=0.61 Lλd/2.
D=2r.
Δx<δ=1.22Δr,
Δsmax=λ2N,
lcohΔsmax.
lcoh=λ22Δλλ2N=Δsmax,
λΔλN
reff=r+Δx.
N=r2λf.
Neff=reff2λf=(r+Δx)2λf
ΔN=Neff-N=(2r+Δx)Δxλf
ΔN2rΔxλf.
ΔN1,
Neff=N+ΔN=N+1N.
ηtot=tZP1ηZP2+tZP2ηZP1,

Metrics