Abstract

A novel and fast integral-equation-based scheme is presented for analyzing transient electromagnetic scattering from homogeneous, isotropic, and nondispersive bodies. The computational complexity of classical marching-on-in-time (MOT) methods for solving time-domain integral equations governing electromagnetic scattering phenomena involving homogeneous penetrable bodies scales as O(NtNs2). Here, Nt represents the number of time steps in the analysis, and Ns denotes the number of spatial degrees of freedom of the discretized electric and magnetic currents on the body’s surface. In contrast, the computational complexity of the proposed plane-wave–time-domain-enhanced MOT solver scales as O(NtNs log2 Ns). Numerical results that demonstrate the accuracy and the efficacy of the scheme are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription