Abstract

Figure 5 was incorrectly printed when this paper was published [J. Opt. Soc. Am. A 19, 1–9 (2002)]. Because the authors believe that the appearance of the wrong figure severely compromised the continuity of their scientific presentation, we are republishing the paper in its entirety.

We calculated the impact of higher-order aberrations on retinal image quality and the magnitude of the visual benefit expected from their correction in a large population of human eyes. Wave aberrations for both eyes of 109 normal subjects and 4 keratoconic patients were measured for 3-, 4-, and 5.7-mm pupils with a Shack–Hartmann sensor. Retinal image quality was estimated by means of the modulation transfer function (MTF) in white light. The visual benefit was calculated as the ratio of the MTF when the monochromatic higher-order aberrations are corrected to the MTF corresponding to the best correction of defocus and astigmatism. On average, the impact of the higher-order aberrations for a 5.7-mm pupil in normal eyes is similar to an equivalent defocus of ∼0.3 D. The average visual benefit for normal eyes at 16 c/deg is ∼2.5 for a 5.7-mm pupil and is negligible for small pupils (1.25 for a 3-mm pupil). The benefit varies greatly among eyes, with some normal eyes showing almost no benefit and others a benefit higher than 4 at 16 c/deg across a 5.7-mm pupil. The benefit for keratoconic eyes is much larger. The benefit at 16 c/deg is 12 and 3 for 5.7- and 3-mm pupils, respectively, averaged across four keratoconics. These theoretical benefits could be realized in normal viewing conditions but only under specific conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 7, 766–795 (1962).
  2. G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
    [CrossRef]
  3. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel Press, Newcastle, Pa., 1969), pp. 375–386.
  4. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  5. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  6. P. Artal, J. Santamarı́a, J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread-function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
    [CrossRef] [PubMed]
  7. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  8. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  9. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  10. P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
    [CrossRef]
  11. I. Iglesias, M. E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  12. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  13. F. Flamant, “Etude de la repartition de lumière dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  14. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
    [PubMed]
  15. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
    [PubMed]
  16. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
    [CrossRef]
  17. D. R. Williams, D. Brainard, M. MacHahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [CrossRef]
  18. P. Artal, R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
    [CrossRef]
  19. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  20. N. López-Gil, P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
    [CrossRef]
  21. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  22. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  23. G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).
  24. G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations in the eye,” J. Opt. Soc. Am. A (to be published).
  25. S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
    [PubMed]
  26. M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
    [CrossRef] [PubMed]
  27. S. Marcos, “Refractive surgery and optical aberrations,” Opt. Photon. News, January2001, pp. 22–25.
  28. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  29. American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, Fla., 1993).
  30. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
    [PubMed]
  31. L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
    [CrossRef]
  32. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
    [CrossRef] [PubMed]
  33. S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  34. P. Mouroulis, H. Zhang, “Visual instrument image quality metrics and the effects of coma and astigmatism,” J. Opt. Soc. Am. A 9, 34–42 (1992).
    [CrossRef] [PubMed]
  35. W. B. King, “Dependence of the Strehl ratio on the magnitude of the variance of the wave aberration,” J. Opt. Soc. Am. 58, 655–661 (1968).
    [CrossRef]
  36. A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).
  37. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  38. P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.
  39. C. A. Johnson, “Effects of luminance and stimulus distance on accommodation and visual resolution,” J. Opt. Soc. Am. 66, 138–142 (1976).
    [CrossRef] [PubMed]
  40. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  41. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
    [CrossRef] [PubMed]
  42. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  43. A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [CrossRef] [PubMed]
  44. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  45. A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
    [CrossRef]
  46. P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  47. M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).
  48. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
    [CrossRef]
  49. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
    [CrossRef]
  50. W. N. Charman, J. Tucker, “Accommodation and color,” J. Opt. Soc. Am. 68, 459–471 (1978).
    [CrossRef] [PubMed]
  51. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
    [CrossRef]
  52. B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

2001

M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
[CrossRef] [PubMed]

S. Marcos, “Refractive surgery and optical aberrations,” Opt. Photon. News, January2001, pp. 22–25.

A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

2000

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

1999

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

1998

1997

1995

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

1994

1993

1992

1991

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

1988

1985

1984

1978

1977

1976

1974

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

1968

1967

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

1966

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

1965

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

1962

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 7, 766–795 (1962).

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

1955

F. Flamant, “Etude de la repartition de lumière dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

1947

Aggarwala, K. R.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

Applegate, R. A.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Aragon, J. L.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.

Artal, P.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

I. Iglesias, M. E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

N. López-Gil, P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

P. Artal, R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

P. Artal, J. Santamarı́a, J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread-function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
[CrossRef] [PubMed]

P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.

Berny, F.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel Press, Newcastle, Pa., 1969), pp. 375–386.

Berrio, E.

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

Berrio, M. E.

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

I. Iglesias, M. E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

Bescós, J.

Bille, J. F.

Bradley, A.

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

Brainard, D.

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

Campbell, M. C. W.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Charman, W. N.

Cox, I.

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).

Cox, I. G.

Decker, K. E.

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

Ferro, M.

Flamant, F.

F. Flamant, “Etude de la repartition de lumière dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Geraghty, E.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Glasser, A.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Goelz, S.

Gonzalez, C.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

Griffin, D. R.

Grimm, B.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

Guirao, A.

A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

He, J. C.

Hofer, H.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.

Howland, B.

Howland, H. C.

Iglesias, I.

Johnson, C. A.

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
[CrossRef] [PubMed]

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

King, W. B.

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Krinke, H. E.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

Kruger, P. B.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

Liang, J.

López-Gil, N.

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

MacHahon, M.

MacRae, S. M.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

Marcos, S.

S. Marcos, “Refractive surgery and optical aberrations,” Opt. Photon. News, January2001, pp. 22–25.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

Mathews, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

Mierdel, P.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

Miller, D. T.

Miranda, I.

Moreno-Barriuso, E.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Mouroulis, P.

Mrochen, M.

M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
[CrossRef] [PubMed]

Navarro, R.

Norrby, S.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Nowbotsing, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Piers, P.

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

Porter, J.

Redondo, M.

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Roorda, A.

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

Santamari´a, J.

Schwiegerling, J.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

Seiler, T.

M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
[CrossRef] [PubMed]

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

Singer, B.

Slansky, S.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel Press, Newcastle, Pa., 1969), pp. 375–386.

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 7, 766–795 (1962).

Snyder, R.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

Thibos, L. N.

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

Tucker, J.

Van den Brink, G.

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Wald, G.

Walsh, G.

Webb, R. H.

Wiegand, W.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

D. R. Williams, D. Brainard, M. MacHahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
[CrossRef]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations in the eye,” J. Opt. Soc. Am. A (to be published).

P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.

Wilson, B. J.

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

Yoon, G. Y.

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).

Yoon, G.-Y.

G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations in the eye,” J. Opt. Soc. Am. A (to be published).

Zhang, H.

Zhang, X.

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

Biophysics

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 7, 766–795 (1962).

Invest. Ophthalmol. Visual Sci.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).

A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).

J. Cataract Refract. Surg.

M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

P. Artal, J. Santamarı́a, J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread-function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

P. Artal, R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

D. R. Williams, D. Brainard, M. MacHahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

I. Iglesias, M. E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

N. López-Gil, P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

P. Mouroulis, H. Zhang, “Visual instrument image quality metrics and the effects of coma and astigmatism,” J. Opt. Soc. Am. A 9, 34–42 (1992).
[CrossRef] [PubMed]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

J. Physiol.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
[PubMed]

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
[PubMed]

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[PubMed]

J. Refract. Surg.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

J. Vision

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[CrossRef]

Ophthalmologie

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997).
[CrossRef]

Opt. Acta

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Opt. Lett.

Opt. Photon. News

S. Marcos, “Refractive surgery and optical aberrations,” Opt. Photon. News, January2001, pp. 22–25.

Optom. Vision Sci.

L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995).
[CrossRef]

Rev. Opt. Theor. Instrum.

F. Flamant, “Etude de la repartition de lumière dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Vision Res.

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Other

American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, Fla., 1993).

G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations in the eye,” J. Opt. Soc. Am. A (to be published).

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel Press, Newcastle, Pa., 1969), pp. 375–386.

P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the apparatus of the Shack–Hartmann wave-front sensor used to measure the eye’s aberrations. The light from the SLD serves as a beacon, forming a point source on the retina. Light reflected from the retina emerges through the eye’s pupil as an aberrated wave front and is propagated through the system to the lenslet array, placed conjugate with the eye’s pupil. The lenslet array forms the Shack–Hartmann image, which is sent to a personal computer, PC, for processing and calculation of the wave aberration.

Fig. 2
Fig. 2

Average across the population of the absolute values of each Zernike coefficient for a pupil of 5.7 mm. Circles, mean values (± standard deviation) for the population of 218 normal eyes; squares, mean values for the sample of eight keratoconic eyes. The inset shows the mean values (± standard deviation) in the normal population of each Zernike coefficient with its sign.

Fig. 3
Fig. 3

Cumulative variance of the wave aberration after removal of the second-order aberrations. Results are averaged for the population of 218 normal eyes.

Fig. 4
Fig. 4

White-light MTFs for different conditions in the normal population of 109 subjects, for a 5.7-mm pupil. The solid line, diffraction-limited MTF when the eye’s monochromatic and chromatic aberrations have both been corrected; long-dashed curve, MTF with all the monochromatic aberrations corrected; dotted curve, mean MTF in the population for a conventional correction of defocus and astigmatism; short-dashed curve, mean MTF for the uncorrected eye. Error bars represent ± one standard deviation from the mean value.

Fig. 5
Fig. 5

Comparison of the effect on the white-light MTF (5.7-mm pupil) of the higher-order aberrations and an introduction of pure defocus. Solid curve, MTF with all the monochromatic aberrations corrected; dashed curve, average MTF in the normal population for the best correction of defocus and astigmatism, with the higher-order aberrations uncorrected; dotted curve, MTF for an eye with no higher-order aberrations and -0.3 D defocus.

Fig. 6
Fig. 6

MTFs averaged in the normal population of 109 subjects, for a 5.7-mm pupil, with only second-order aberrations corrected (dotted curves); second and third orders corrected (short-dashed curve); aberrations up through fourth order corrected (long-dashed curves); all orders corrected (solid curves); and aberrations up through third order plus spherical aberration corrected (dashed–dotted thin curves). (a) White light, (b) monochromatic light.

Fig. 7
Fig. 7

Average MTFs, in white light, in a population of ten normal eyes and a 6-mm pupil, when the aberrations up through tenth order, up through fifth order, and up through second order are corrected. The wave aberrations for this population were measured up through tenth order.

Fig. 8
Fig. 8

Visual benefit for 5.7-, 4.4-, and 3-mm pupils. (a) Mean values for the 109 normal subjects. (b) Mean values for the four keratoconic subjects. Notice the scale change between (a) and (b).

Fig. 9
Fig. 9

Distribution of visual benefit for all normal subjects across a 5.7-mm pupil at 16 c/deg and 32 c/deg. The average across right and left eyes were considered in every subject. In black, the visual benefit for the four keratoconic subjects.

Fig. 10
Fig. 10

Simulated retinal images in white light (5.7-mm pupil), of the last four lines of the Snellen chart corresponding to the 20/30, 20/20, 20/15, and 20/10 vision. 20/20 letters subtend 5 arc min. (a) Ideal aberration-free eye with only chromatic aberration uncorrected; (b) same as in (a), but defocused -0.3 D; (c) real eye with medium aberrations for the best correction of defocus and astigmatism eye, (d) same as in (c), for an eye with moderately high aberrations.

Metrics