Abstract

We present an algorithm for identifying linear mixtures of a specified set of materials in 0.4–2.5 µm airborne imaging spectrometer data. The algorithm is invariant to the illumination and atmospheric conditions and the relative amounts of the specified materials within a pixel. Only the spectral reflectance functions for the specified materials are required by the algorithm. Invariance over illumination and atmospheric conditions is achieved by incorporating a physical model for scene variability in the constrained optimization formulation. The algorithm also computes estimates of the amounts of the specified materials in identified mixtures. We demonstrate the effectiveness of the algorithm by using real and synthetic Hyperspectral Digital Imaging Collection Experiment imagery acquired over a range of conditions and altitudes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995).
    [Crossref]
  2. C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
    [Crossref]
  3. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
    [Crossref]
  4. A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
    [Crossref]
  5. G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999).
    [Crossref]
  6. W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
    [Crossref]
  7. T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990).
    [Crossref]
  8. J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
    [Crossref]
  9. P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
    [Crossref]
  10. K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
    [Crossref]
  11. J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
    [Crossref]
  12. B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
    [Crossref]
  13. R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993).
    [Crossref]
  14. F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
    [Crossref]
  15. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).
  16. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).
  17. R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).
  18. P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).
  19. L. Kaufman, J. Hodgins, “IQP—quadratic programming,” in PORT Mathematical Subroutine Library, 3rd ed., P. A. Fox, ed. (AT&T Bell Telephone Laboratories, Inc., Murray Hill, N.J., 1997) ( http://www.bell-labs.com/project/PORT ).
  20. G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

1999 (1)

G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999).
[Crossref]

1993 (3)

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[Crossref]

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

1992 (1)

P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
[Crossref]

1986 (1)

J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
[Crossref]

1985 (1)

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

Adams, J.

P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
[Crossref]

J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
[Crossref]

Aldrich, W.

W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
[Crossref]

Alley, R.

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

Anderson, M. E.

R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[Crossref]

Antoniades, J.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Armer, D. C.

R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[Crossref]

Barloon, P. J.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

Basedow, R. W.

R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[Crossref]

Baumbeck, M.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Beaven, S. G.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).

Boardman, J. B.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

Bowles, J.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Bruegge, C.

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

Chrien, T.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990).
[Crossref]

Conel, J.

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993).
[Crossref]

Daniel, M.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Dixon, R.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Duda, R.

R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).

Eastwood, M.

T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990).
[Crossref]

Enmark, H.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

Fisher, J.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Gao, B. C.

B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[Crossref]

Gill, P. E.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).

Goetz, A. F. H.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[Crossref]

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

Golub, G. H.

G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Green, R.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990).
[Crossref]

Green, R. O.

R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993).
[Crossref]

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

Grossman, J.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Haas, D.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Hansen, E.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

Hart, P.

R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).

Healey, G.

G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999).
[Crossref]

Heidebrecht, K.

B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[Crossref]

Heidebrecht, K. B.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

Hodgins, J.

L. Kaufman, J. Hodgins, “IQP—quadratic programming,” in PORT Mathematical Subroutine Library, 3rd ed., P. A. Fox, ed. (AT&T Bell Telephone Laboratories, Inc., Murray Hill, N.J., 1997) ( http://www.bell-labs.com/project/PORT ).

Johnson, P.

P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
[Crossref]

J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
[Crossref]

Kappus, M.

W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
[Crossref]

Kaufman, L.

L. Kaufman, J. Hodgins, “IQP—quadratic programming,” in PORT Mathematical Subroutine Library, 3rd ed., P. A. Fox, ed. (AT&T Bell Telephone Laboratories, Inc., Murray Hill, N.J., 1997) ( http://www.bell-labs.com/project/PORT ).

Kruse, F. A.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

LaSota, C.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Lefkoff, A. B.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

Mitchell, P.

W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
[Crossref]

Murray, W.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).

Palmadesso, P.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

Parish, J.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Porter, W.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

Resmini, R.

W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
[Crossref]

Roberts, D.

R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993).
[Crossref]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).

Rock, B.

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

Schott, J. R.

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).

Shapiro, A. T.

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

Simi, C. G.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Slater, D.

G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999).
[Crossref]

Smith, M.

P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
[Crossref]

J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
[Crossref]

Solomon, J.

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

Tsang, K. Y.

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

van Loan, C. F.

G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Vane, G.

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

Winter, E. M.

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

Wright, M. H.

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).

IEEE Trans. Geosci. Remote Sens. (1)

G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999).
[Crossref]

J. Geophys. Res. [Planets] (1)

P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992).
[Crossref]

J. Geophys. Res. [Solid Earth] (1)

J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986).
[Crossref]

Remote Sens. Environ. (3)

B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993).
[Crossref]

F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993).
[Crossref]

G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993).
[Crossref]

Science (1)

A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985).
[Crossref]

Other (13)

R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[Crossref]

C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000).
[Crossref]

K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998).
[Crossref]

J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987).
[Crossref]

W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996).
[Crossref]

T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990).
[Crossref]

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).

R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).

L. Kaufman, J. Hodgins, “IQP—quadratic programming,” in PORT Mathematical Subroutine Library, 3rd ed., P. A. Fox, ed. (AT&T Bell Telephone Laboratories, Inc., Murray Hill, N.J., 1997) ( http://www.bell-labs.com/project/PORT ).

G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Mixture identification results for desert HYDICE image.

Fig. 2
Fig. 2

False mixture pixels identified for transformed desert HYDICE image.

Fig. 3
Fig. 3

Solar, surface, and viewing geometry.

Fig. 4
Fig. 4

Sensor radiance [W/(cm2 sr μm)] for material mixture under varying illumination and atmospheric conditions.

Fig. 5
Fig. 5

Gray-scale versions of HYDICE images 1 (top) and 2 (bottom), which contain a highlighted region consisting of the four target materials.

Fig. 6
Fig. 6

Magnified view of target material region in images 1 (left) and 2 (right).

Fig. 7
Fig. 7

Fraction of mixture pixels identified versus false alarm rate for image 1.

Fig. 8
Fig. 8

Fraction of mixture pixels identified versus false alarm rate for image 2.

Fig. 9
Fig. 9

Mixture identification results for image 1.

Fig. 10
Fig. 10

Mixture identification results for image 2.

Fig. 11
Fig. 11

Fraction of mixture pixels identified versus false alarm rate for transformed image 1.

Fig. 12
Fig. 12

Fraction of mixture pixels identified versus false alarm rate for transformed image 2.

Fig. 13
Fig. 13

Mixture identification results for transformed image 1.

Fig. 14
Fig. 14

Mixture identification results for transformed image 2.

Tables (1)

Tables Icon

Table 1 Range of Atmospheric and Geometric Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

arccosP·P(x, y)|PP(x, y)|.
p=k=1Nαkek+n,
k=1Nαk=1,αk0.
e(x, y, λ)=Tu(zg, zv, θv, ϕv, λ)R(x, y, λ)×Td(zg, θo, ϕo, λ)Eo(λ)cos θo+ϕ=02πθ=0π/2Es(θ, ϕ, λ)cos θ sin θ dθdϕ+P(zg, zv, θv, ϕv, λ),
Si={si1, si2,, siL}
pj,β=k=1Nβkskj,
k=1Nβk=1,βk0,
Ej,β=|p-pj,β|2.
Ej,β=p-k=1NβkskjTp-k=1Nβkskj
=p·p-2k=1Nβkp·skj+k=1Nβkl=1Nβlskj·slj
=p·p-2[p·s1jp·sNj]β+k=1Nβk[skj·s1jskj·sNj]β
=p·p-2[p·s1jp·sNj]β+βTs1j·s1js1j·s2js1j·sNjs2j·s1js2j·s2js2j·sNjsNj·s1jsNj·s2jsNj·sNjβ,
12βTHβ+cTβ
[111]β=1
βk0,k=1, 2,.., N,
H=s1j·s1js1j·s2js1j·sNjs2j·s1js2j·s2js2j·sNjsNj·s1jsNj·s2jsNj·sNj
c=-[p·s1jp·s2jp·sNj]T
E*=minj,β Ej,β
δ=p-1kD(pTbk)bk2.

Metrics