Abstract

We compute the scalar optical properties of size–shape distributions of wavelength-sized randomly oriented homogeneous particles with different nonaxially symmetric geometries and investigate how well they can be modeled with a simple spherical, spheroidal, or cylindrical particle model. We find that a spherical particle model can be used to determine the extinction and scattering cross sections, the single-scattering albedo, and the asymmetry parameter with an error of less than 2%, whereas the extinction-to-backscatter ratio Reb is reproduced only with an error of 9%. The cylindrical and spheroidal particle models yield slightly improved results for Reb that deviate from those obtained for the complex particle ensemble by 7% and 5%, respectively. Large discrepancies between results of the different models are observed for the linear depolarization ratio, thus indicating limitations of models based on simple particle shapes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription