Abstract

The development of technology to measure and correct the eye’s higher-order aberrations, i.e., those beyond defocus and astigmatism, raises the issue of how much visual benefit can be obtained by providing such correction. We demonstrate improvements in contrast sensitivity and visual acuity in white light and in monochromatic light when adaptive optics corrects the eye’s higher-order monochromatic aberrations. In white light, the contrast sensitivity and visual acuity when most monochromatic aberrations are corrected with a deformable mirror are somewhat higher than when defocus and astigmatism alone are corrected. Moreover, viewing conditions in which monochromatic aberrations are corrected and chromatic aberrations are avoided provides an even larger improvement in contrast sensitivity and visual acuity. These results are in reasonable agreement with the theoretical improvement calculated from the eye’s optical modulation transfer function.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).
  2. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wave-front distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  3. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  4. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  5. J. C. He, S. Marcos, R. H. Webb, S. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  6. S. MacRae, “Supernormal vision, hypervision and customized corneal ablation,” J. Cataract. Refract. Surg. 26, 154–157 (1999).
    [CrossRef]
  7. T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
    [PubMed]
  8. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  9. G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).
  10. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
    [CrossRef] [PubMed]
  11. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  12. P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
    [CrossRef] [PubMed]
  13. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  14. A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
    [CrossRef]
  15. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  16. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  17. X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
    [CrossRef] [PubMed]
  18. F. L. Van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
    [CrossRef]
  19. A. Eisner, D. I. A. MacLeod, “Blue sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
    [CrossRef] [PubMed]
  20. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73, 860–861 (1983).
    [CrossRef]
  21. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
  22. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  23. A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
    [CrossRef]
  24. L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
    [CrossRef]
  25. R. A. Applegate, G. Hilmantel, L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.
  26. J. E. Lovie-Kitchin, B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
    [CrossRef]
  27. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  28. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
    [CrossRef] [PubMed]
  29. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
    [CrossRef] [PubMed]
  30. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
    [CrossRef] [PubMed]
  31. S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  32. G. A. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13, 1–97 (1935).
  33. W. H. Miller, “Ocular optical filtering,” in Handbook of Sensory Physiology, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), Vol. VII/6A, pp. 70–143.
  34. C. Yuodelis, A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
    [CrossRef]
  35. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
    [CrossRef] [PubMed]
  36. C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  37. D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception, Committee on Vision (National Academy Press, Washington D.C., 1990), pp. 135–148.
  38. D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.
  39. W. N. Charman, “Ocular aberration and supernormal vision,” Optician 220, 20–24 (2000).

2002

2001

2000

J. E. Lovie-Kitchin, B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
[CrossRef]

W. N. Charman, “Ocular aberration and supernormal vision,” Optician 220, 20–24 (2000).

T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
[PubMed]

1999

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).

S. MacRae, “Supernormal vision, hypervision and customized corneal ablation,” J. Cataract. Refract. Surg. 26, 154–157 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

1998

1997

1994

1992

1991

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

1990

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

1988

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

1987

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

1986

C. Yuodelis, A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
[CrossRef]

1985

1983

V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73, 860–861 (1983).
[CrossRef]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1981

1980

1974

A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

1967

F. L. Van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
[CrossRef]

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).

1957

1947

1935

G. A. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13, 1–97 (1935).

Applegate, R. A.

R. A. Applegate, G. Hilmantel, L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.

Aragon, J. L.

Artal, P.

Bedford, R. E.

Bille, J.

Bouman, M. A.

Bradley, A.

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Brown, B.

J. E. Lovie-Kitchin, B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
[CrossRef]

Burns, S.

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).

Campbell, M. C. W.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “Ocular aberration and supernormal vision,” Optician 220, 20–24 (2000).

Cox, I.

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).

Cox, I. G.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Eisner, A.

Goelz, S.

Griffin, D. R.

Grimm, B.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).

Guirao, A.

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

He, J. C.

Hefer, H.

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Hendrikson, A.

C. Yuodelis, A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
[CrossRef]

Hilmantel, G.

R. A. Applegate, G. Hilmantel, L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.

Hofer, H.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Kaemmerer, M.

T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
[PubMed]

Kalia, R. R.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Kalina, R. R.

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Liang, J.

Lovie-Kitchin, J. E.

J. E. Lovie-Kitchin, B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
[CrossRef]

MacLeod, D. I. A.

MacRae, S.

S. MacRae, “Supernormal vision, hypervision and customized corneal ablation,” J. Cataract. Refract. Surg. 26, 154–157 (1999).
[CrossRef]

Mahajan, V. N.

Marcos, S.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Miller, D. T.

Miller, W. H.

W. H. Miller, “Ocular optical filtering,” in Handbook of Sensory Physiology, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), Vol. VII/6A, pp. 70–143.

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Mrochen, M.

T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
[PubMed]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Østerberg, G. A.

G. A. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13, 1–97 (1935).

Packer, O.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Pelli, D. G.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Penney, C. M.

Porter, J.

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

Powell, I.

Seiler, T.

T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
[PubMed]

Simonet, P.

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Thibos, L.

L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

Thibos, L. N.

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef] [PubMed]

R. A. Applegate, G. Hilmantel, L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.

Thompson, K. P.

Van Meeteren, A.

A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Van Nes, F. L.

von Helmholtz, H.

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).

Wald, G.

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Webb, R. H.

Williams, D. R.

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception, Committee on Vision (National Academy Press, Washington D.C., 1990), pp. 135–148.

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

Wyszecki, G.

Yoon, G. Y.

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

Yuodelis, C.

C. Yuodelis, A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
[CrossRef]

Zhang, X.

L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Acta Ophthalmol.

G. A. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13, 1–97 (1935).

Appl. Opt.

Invest. Ophthalmol. Visual Sci. Suppl.

G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).

J. Cataract. Refract. Surg.

S. MacRae, “Supernormal vision, hypervision and customized corneal ablation,” J. Cataract. Refract. Surg. 26, 154–157 (1999).
[CrossRef]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. R. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef] [PubMed]

X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

J. Physiol.

F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).

J. Refract. Surg.

T. Seiler, M. Mrochen, M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
[PubMed]

Opt. Acta

A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
[CrossRef]

Optician

W. N. Charman, “Ocular aberration and supernormal vision,” Optician 220, 20–24 (2000).

Optom. Vision Sci.

L. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
[CrossRef]

J. E. Lovie-Kitchin, B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
[CrossRef]

Percept. Psychophys.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Science

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Vision Res.

C. Yuodelis, A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Other

W. H. Miller, “Ocular optical filtering,” in Handbook of Sensory Physiology, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), Vol. VII/6A, pp. 70–143.

R. A. Applegate, G. Hilmantel, L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).

D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception, Committee on Vision (National Academy Press, Washington D.C., 1990), pp. 135–148.

D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11–32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Difference in retinal image quality when the actual CRT spectrum (dashed curve) and the equal-energy spectrum (solid curve) were used. The white-light modulation transfer functions shown were based on the measured wave aberration for a 6-mm pupil of subject GYY. The second-order aberrations, defocus and astigmatism, were removed. The CRT spectrum was the typical trimodal emission spectrum of a color monitor. The reference wavelength where chromatic aberration is zero was 555 nm, and the photopic spectral sensitivity function was used as a weighting function.

Fig. 2
Fig. 2

White-light modulation transfer function when the amount of defocus is optimized (solid curve) and zero (dashed curve) for a 6-mm pupil. Both modulation transfer functions were the average of three subjects with no correction of aberration. Optimizing defocus provides better retinal image quality than that when defocus is zero.

Fig. 3
Fig. 3

Contrast sensitivity functions for a 6-mm pupil for subjects YY and GYY after correction of various aberrations: defocus and astigmatism only (× symbols), measured in white light; chromatic aberration, defocus and astigmatism (open triangles); monochromatic aberrations including defocus and astigmatism only (open circles), and both monochromatic and chromatic aberrations (solid circles), measured at 550 nm. The error bars represent ± one standard error.

Fig. 4
Fig. 4

Symbols show visual benefits for a 6-mm pupil as estimated from the contrast sensitivity functions in Fig. 3. The visual benefit is defined as the ratio of the contrast sensitivity function when various aberrations are corrected to that when defocus and astigmatism only are corrected. Open triangles, correspond to the visual benefit of correcting chromatic aberration (the ratio of open triangles to × symbols in Fig. 3). Open circles, visual benefit of correcting higher-order monochromatic aberrations (the ratio of open circles to × symbols in Fig. 3); solid circles, effect of correcting both higher-order monochromatic and chromatic aberrations (the ratio of filled circles to × symbols in Fig. 3), respectively. Continuous curves, theoretical visual benefit of correcting both higher-order monochromatic and chromatic aberrations (solid curve) and of correcting higher-order monochromatic aberrations only (dashed curve) and of correcting chromatic aberration only (dotted curve). The theoretical visual benefit was estimated by computing the modulation transfer function. To make the conditions of the theoretical computations as similar as possible to those of the contrast sensitivity measurements, the residual monochromatic aberrations due to the imperfection of the adaptive optics correction were taken into account in the calculations. The error bars represent ± one standard error.  

Fig. 5
Fig. 5

Contrast sensitivity functions (upper) and the visual benefit (lower) for a 3-mm pupil under the same conditions as in Figs. 3 and 4. The error bars represent ± one standard error.

Fig. 6
Fig. 6

Modulation transfer functions (lower) and the visual benefit (upper) of correcting various aberrations for a 3-mm (left) and a 6-mm (right) pupil when the correction of monochromatic and chromatic aberrations is perfect. This theoretical expectation is based on the measured wave aberrations of 17 normal human subjects. The amount of defocus was optimized for a 16-c/deg grating after setting astigmatism zero. A perfect correcting method was assumed for the calculation.

Fig. 7
Fig. 7

Theoretical visual benefit for a 6-mm pupil produced by narrowing the spectral bandwidth of white light to reduce the effect of chromatic aberration. Perfect correction of monochromatic aberrations was assumed, and chromatic aberration remains but with an amount depending on spectral bandwidth. The bandwidth on the horizontal axis is chosen with ±10-nm wavelength steps around the reference wavelength of 555 nm.

Fig. 8
Fig. 8

Visual acuity (line thickness of the letter E target) measurements at two retinal illuminance levels, 575 and 57 Td when correcting various aberrations were corrected. The estimated Snellen acuity is also shown on the other vertical axis. The pupil size was 6-mm in diameter and the eyes were under cycloplegia. The error bars represent ± one standard error.

Fig. 9
Fig. 9

Theoretical improvement in grating acuity when various aberrations were corrected. The same modulation transfer functions for a 6-mm pupil as those shown in Fig. 6 are used. Intersections between modulation transfer functions and the neural contrast threshold curve, from Williams,27 provide cutoff spatial frequencies. Numbers in the figure correspond to theoretical visual benefit in visual acuity. Visual acuity is improved by factor of 1.2 and 1.4 by correcting chromatic aberration only and of correcting higher-order monochromatic aberrations only, respectively.

Metrics