Abstract

Some extinction laws for radiation transmitted through inhomogeneous random media were discussed by Kostinski [J. Opt. Soc. Am. A 18, 1929 (2001)] by means of a complicated use of concepts of statistical theory of fluids. We show that these extinction laws are readily obtained in terms of classical probability theory. The validity of exponential extinction laws for large observation distances (as compared with the size of inhomogeneities of a medium) is proven and emphasized. It is shown that Kostinski’s results turn out to be applicable to small observation distances only, for which the concept of extinction law is hardly applicable.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Kostinski, “On the extinction of radiation by a homogeneous but spatially correlated random medium,” J. Opt. Soc. Am. A 18, 1929–1933 (2001).
    [CrossRef]
  2. A. G. Borovoi, “Radiative transfer through inhomogeneous media,” Dokl. Akad. Nauk SSSR 276, 1374–1378 (1984); in Russian.
  3. S. Chandrasekar, Radiative Transfer (Oxford U. Press, London, 1950).
  4. M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York, 1964).
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. 1 and 2.

2001

1984

A. G. Borovoi, “Radiative transfer through inhomogeneous media,” Dokl. Akad. Nauk SSSR 276, 1374–1378 (1984); in Russian.

Borovoi, A. G.

A. G. Borovoi, “Radiative transfer through inhomogeneous media,” Dokl. Akad. Nauk SSSR 276, 1374–1378 (1984); in Russian.

Chandrasekar, S.

S. Chandrasekar, Radiative Transfer (Oxford U. Press, London, 1950).

Goldberger, M. L.

M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York, 1964).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. 1 and 2.

Kostinski, A. B.

Watson, K. M.

M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York, 1964).

Dokl. Akad. Nauk SSSR

A. G. Borovoi, “Radiative transfer through inhomogeneous media,” Dokl. Akad. Nauk SSSR 276, 1374–1378 (1984); in Russian.

J. Opt. Soc. Am. A

Other

S. Chandrasekar, Radiative Transfer (Oxford U. Press, London, 1950).

M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York, 1964).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T=exp(-τ)=exp-σ0Lc(l)dl,
exp(-τ)exp(-τ),
T=exp(-τ)=expn=1(-1)nκn/n!=expn=1(-σ)ngndl1dl2dln/n!,
T=exp(-τ)=exp-σ0Lc(l)dl.
T=exp-σ0Lc˜(l)dl,
c˜(l)=c(l)+n=2(-σ)n-1bn(l)/n!.
c(r)=j=1Ncj(r),
sj=exp-σ-cj(x, y, z)dz-1dxdy
T=exp-sCL,
T=0p(c)exp(-cσL)dc=Λp(c)(σL).
p(c)=c-1exp(-c/c).
T=1/(1+cσL).

Metrics