Abstract

To gain more insight into the relationship between foveal and peripheral refractive errors in humans, spheres, cylinders, and their axes were binocularly measured across the visual field in myopic, emmetropic, and hyperopic groups of young subjects. Both automated infrared photorefraction (the “PowerRefractor”; www.plusoptix.de) and a double-pass technique were used because the PowerRefractor provided extensive data from the central 44 deg of the visual field in a very convenient and fast way. Two-dimensional maps for the average cross cylinders and spherical equivalents, as well as for the axes of the power meridians of the cylinders, were created. A small amount of lower-field myopia was detected with a significant vertical gradient in spherical equivalents. In the central visual field there was little difference among the three refractive groups. The established double-pass technique provided complementary data also from the far periphery. At 45 deg eccentricity the double-pass technique revealed relatively more hyperopic spherical equivalents in myopic subjects than in emmetropic subjects [±2.73±2.85 D relative to the fovea, p<0.01 (±standard deviation)] and more myopic spherical equivalents in hyperopic subjects (-3.84±2.86 D relative to the fovea, p<0.01). Owing to the pronounced peripheral astigmatism, spherical equivalents (refractions with respect to the plane of the circle of least confusion) became myopic relative to the fovea in all three groups. The finding of general peripheral myopia was unexpected. Its possible roles in foveal refractive development are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
    [CrossRef] [PubMed]
  2. S. Diether, F. Schaeffel, “Local defocus and local eye growth in chicks with normal accommodation,” Vision Res. 37, 659–668 (1997).
    [CrossRef] [PubMed]
  3. S. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Visual Sci. Suppl. 43, #189 (ARVO abstract2002).
  4. N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).
  5. J. T. Siegwart, T. T. Norton, “Regulation of the mechanical properties of tree shrew sclera by the visual environment,” Vision Res. 39, 387–407 (1999).
    [CrossRef] [PubMed]
  6. M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).
    [PubMed]
  7. J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).
  8. D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).
  9. M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
    [CrossRef] [PubMed]
  10. M. C. Dunne, D. A. Barnes, “Modelling oblique astigma-tism in eyes with known peripheral refraction and optical dimensions,” Ophthalmic Physiol. Opt. 10, 46–48 (1990).
    [CrossRef] [PubMed]
  11. F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).
  12. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  13. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
    [CrossRef]
  14. F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
    [CrossRef]
  15. F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vision Sci. 79, 329–334 (2002).
    [CrossRef]
  16. J. Santamarı́a, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef]
  17. A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  18. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
    [CrossRef] [PubMed]
  19. P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
    [CrossRef] [PubMed]
  20. A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double-pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
    [CrossRef] [PubMed]
  21. P. Artal, I. Iglesias, N. Lopez-Gil, D. G. Green, “Double-pass measurements of the retinal image quality with unequal entrance and exit pupils sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  22. U. Oechsner, R. Kusel, “Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted,” Optom. Vision Sci. 73, 425–433 (1997).
    [CrossRef]
  23. W. F. Harris, “Algebra of sphero-cylinders and refractive errors, and their means, variance, and standard deviation,” Am. J. Optom. Physiol. Opt. 65, 794–802 (1988).
    [CrossRef] [PubMed]
  24. G. L. Walls, The Vertebrate Eye and Its Adaptive Radiation (Cranebrook Institute of Science, Bloomfield Hills, Mich., 1942).
  25. J. G. Sivak, “An evaluation of the ‘ramp’ retina of the horse eye,” Vision Res. 15, 1353–1356 (1975).
    [CrossRef] [PubMed]
  26. C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).
  27. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
    [CrossRef]
  28. W. Lotmar, T. Lotmar, “Peripheral astigmatism in the human eye: experimental data and theoretical predictions,” J. Opt. Soc. Am. 64, 510–513 (1974).
    [CrossRef] [PubMed]
  29. D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
    [CrossRef] [PubMed]
  30. J. A. M. Jennings, W. N. Charman, “Off-axis image quality of the human eye,” Vision Res. 21, 445–455 (1981).
    [CrossRef]
  31. M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
    [CrossRef] [PubMed]
  32. Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).
  33. T. Wertheim, “Über die indirekte Sehschärfe,” Z. Psychol. Physiol. Sinnesorgane 7, 172–187 (1894).
  34. W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 321.
  35. C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
    [CrossRef]
  36. W. Hodos, J. T. Erichsen, “Lower field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30, 653–659 (1990).
    [CrossRef]
  37. F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).
  38. F. Schaeffel, G. Hagel, J. Eikerman, T. Collett, “Lower-field myopia and astigmatism in amphibians and chickens,” J. Opt. Soc. Am. A 11, 487–495 (1994).
    [CrossRef]
  39. J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.
  40. F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
    [CrossRef]
  41. E. L. Smith, J. Huang, L. F. Huang, “Cylindrical spectacle lenses alter emmetropization and produce astigmatism in young monkeys,” in Myopia Updates. Proceedings of the 6th International Conference on Myopia, T. Tokoro, ed. (Springer, Berlin, 1998), pp. 336–343.
  42. R. C. McLean, J. Wallman, “Despite severe imposed astigmatic blur, chicks compensate for spectacle lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 38, #2521 (ARVO abstract1997).
  43. K. Schmid, C. F. Wildsoet, “Natural and imposed astigmatism and their relation to emmetropization in the chick,” Exp. Eye Res. 64, 837–847 (1997).
    [CrossRef] [PubMed]
  44. A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

2002 (2)

S. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Visual Sci. Suppl. 43, #189 (ARVO abstract2002).

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vision Sci. 79, 329–334 (2002).
[CrossRef]

2000 (4)

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).

J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

1999 (3)

J. T. Siegwart, T. T. Norton, “Regulation of the mechanical properties of tree shrew sclera by the visual environment,” Vision Res. 39, 387–407 (1999).
[CrossRef] [PubMed]

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double-pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

1997 (6)

U. Oechsner, R. Kusel, “Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted,” Optom. Vision Sci. 73, 425–433 (1997).
[CrossRef]

Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

S. Diether, F. Schaeffel, “Local defocus and local eye growth in chicks with normal accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

R. C. McLean, J. Wallman, “Despite severe imposed astigmatic blur, chicks compensate for spectacle lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 38, #2521 (ARVO abstract1997).

K. Schmid, C. F. Wildsoet, “Natural and imposed astigmatism and their relation to emmetropization in the chick,” Exp. Eye Res. 64, 837–847 (1997).
[CrossRef] [PubMed]

1996 (1)

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

1995 (3)

1994 (1)

1993 (3)

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[CrossRef] [PubMed]

1990 (2)

M. C. Dunne, D. A. Barnes, “Modelling oblique astigma-tism in eyes with known peripheral refraction and optical dimensions,” Ophthalmic Physiol. Opt. 10, 46–48 (1990).
[CrossRef] [PubMed]

W. Hodos, J. T. Erichsen, “Lower field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30, 653–659 (1990).
[CrossRef]

1988 (1)

W. F. Harris, “Algebra of sphero-cylinders and refractive errors, and their means, variance, and standard deviation,” Am. J. Optom. Physiol. Opt. 65, 794–802 (1988).
[CrossRef] [PubMed]

1987 (3)

J. Santamarı́a, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef]

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
[CrossRef] [PubMed]

1985 (1)

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

1981 (2)

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).
[PubMed]

J. A. M. Jennings, W. N. Charman, “Off-axis image quality of the human eye,” Vision Res. 21, 445–455 (1981).
[CrossRef]

1975 (1)

J. G. Sivak, “An evaluation of the ‘ramp’ retina of the horse eye,” Vision Res. 15, 1353–1356 (1975).
[CrossRef] [PubMed]

1974 (1)

1971 (2)

W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
[CrossRef]

F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
[CrossRef]

1932 (1)

C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).

1931 (1)

C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

1894 (1)

T. Wertheim, “Über die indirekte Sehschärfe,” Z. Psychol. Physiol. Sinnesorgane 7, 172–187 (1894).

Artal, P.

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double-pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

P. Artal, I. Iglesias, N. Lopez-Gil, D. G. Green, “Double-pass measurements of the retinal image quality with unequal entrance and exit pupils sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[CrossRef] [PubMed]

J. Santamarı́a, P. Artal, J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef]

A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

Barnes, D. A.

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, “Modelling oblique astigma-tism in eyes with known peripheral refraction and optical dimensions,” Ophthalmic Physiol. Opt. 10, 46–48 (1990).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
[CrossRef] [PubMed]

Bescós, J.

Bradley, A.

Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).

Brainard, D.

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

Charman, W. N.

J. A. M. Jennings, W. N. Charman, “Off-axis image quality of the human eye,” Vision Res. 21, 445–455 (1981).
[CrossRef]

Choi, M.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

Clement, R. A.

M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
[CrossRef] [PubMed]

Collett, T.

Colombo, E.

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

Derrington, A. M.

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

Diether, S.

S. Diether, F. Schaeffel, “Local defocus and local eye growth in chicks with normal accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

Dunne, M. C.

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, “Modelling oblique astigma-tism in eyes with known peripheral refraction and optical dimensions,” Ophthalmic Physiol. Opt. 10, 46–48 (1990).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
[CrossRef] [PubMed]

Dunne, M. C. M.

J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).

Eikerman, J.

Erichsen, J. T.

W. Hodos, J. T. Erichsen, “Lower field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30, 653–659 (1990).
[CrossRef]

Ferree, C. E.

C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).

Ferree, C. R.

C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Fitzke, F. W.

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

Friedman, N. E.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Fugate-Wentzek, L. A.

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

Gekeler, F.

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

Gentle, A.

N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).

Geraghty, E.

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Gilmartin, B.

J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).

Gonzales, C.

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Gottlieb, M. D.

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

Green, D. G.

Guirao, A.

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double-pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

Hagel, G.

Hardy, C.

C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).

C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Harris, W. F.

W. F. Harris, “Algebra of sphero-cylinders and refractive errors, and their means, variance, and standard deviation,” Am. J. Optom. Physiol. Opt. 65, 794–802 (1988).
[CrossRef] [PubMed]

Hayes, B. P.

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

Hodos, W.

W. Hodos, J. T. Erichsen, “Lower field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30, 653–659 (1990).
[CrossRef]

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

Holden, A. L.

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

Hoogenboom, W. P. H.

F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
[CrossRef]

Hooger-Heide, J.

F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
[CrossRef]

Howland, H. C.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

Huang, J.

E. L. Smith, J. Huang, L. F. Huang, “Cylindrical spectacle lenses alter emmetropization and produce astigmatism in young monkeys,” in Myopia Updates. Proceedings of the 6th International Conference on Myopia, T. Tokoro, ed. (Springer, Berlin, 1998), pp. 336–343.

Huang, L. F.

E. L. Smith, J. Huang, L. F. Huang, “Cylindrical spectacle lenses alter emmetropization and produce astigmatism in young monkeys,” in Myopia Updates. Proceedings of the 6th International Conference on Myopia, T. Tokoro, ed. (Springer, Berlin, 1998), pp. 336–343.

Iglesias, I.

Jennings, J. A. M.

J. A. M. Jennings, W. N. Charman, “Off-axis image quality of the human eye,” Vision Res. 21, 445–455 (1981).
[CrossRef]

Kusel, R.

U. Oechsner, R. Kusel, “Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted,” Optom. Vision Sci. 73, 425–433 (1997).
[CrossRef]

Lawlor, P.

N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).

Lopez-Gil, N.

Lotmar, T.

Lotmar, W.

Love, J.

J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).

Low, J. C.

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

Marcos, S.

McBrien, N. A.

N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).

McFadden, S.

S. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Visual Sci. Suppl. 43, #189 (ARVO abstract2002).

McLean, R. C.

R. C. McLean, J. Wallman, “Despite severe imposed astigmatic blur, chicks compensate for spectacle lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 38, #2521 (ARVO abstract1997).

McMahon, R. N.

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

Millodot, M.

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).
[PubMed]

Misson, G. P.

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

Mutti, D. O.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Navarro, R.

Norrby, S.

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Norton, T. T.

J. T. Siegwart, T. T. Norton, “Regulation of the mechanical properties of tree shrew sclera by the visual environment,” Vision Res. 39, 387–407 (1999).
[CrossRef] [PubMed]

Oechsner, U.

U. Oechsner, R. Kusel, “Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted,” Optom. Vision Sci. 73, 425–433 (1997).
[CrossRef]

Park, T. W.

J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.

Rajaram, V.

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

Rand, G.

C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).

C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Redondo, M.

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Rempt, F.

F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
[CrossRef]

Santamari´a, J.

Schaeffel, F.

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vision Sci. 79, 329–334 (2002).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

S. Diether, F. Schaeffel, “Local defocus and local eye growth in chicks with normal accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

F. Schaeffel, G. Hagel, J. Eikerman, T. Collett, “Lower-field myopia and astigmatism in amphibians and chickens,” J. Opt. Soc. Am. A 11, 487–495 (1994).
[CrossRef]

F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).

A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

Schmid, K.

K. Schmid, C. F. Wildsoet, “Natural and imposed astigmatism and their relation to emmetropization in the chick,” Exp. Eye Res. 64, 837–847 (1997).
[CrossRef] [PubMed]

Seidemann, A.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

Sholtz, R. I.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Siegwart, J. T.

J. T. Siegwart, T. T. Norton, “Regulation of the mechanical properties of tree shrew sclera by the visual environment,” Vision Res. 39, 387–407 (1999).
[CrossRef] [PubMed]

Sivak, J. G.

J. G. Sivak, “An evaluation of the ‘ramp’ retina of the horse eye,” Vision Res. 15, 1353–1356 (1975).
[CrossRef] [PubMed]

Smith, E. L.

E. L. Smith, J. Huang, L. F. Huang, “Cylindrical spectacle lenses alter emmetropization and produce astigmatism in young monkeys,” in Myopia Updates. Proceedings of the 6th International Conference on Myopia, T. Tokoro, ed. (Springer, Berlin, 1998), pp. 336–343.

Smith, W.

W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 321.

Thibos, L. N.

Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).

Wallman, J.

R. C. McLean, J. Wallman, “Despite severe imposed astigmatic blur, chicks compensate for spectacle lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 38, #2521 (ARVO abstract1997).

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.

Walls, G. L.

G. L. Walls, The Vertebrate Eye and Its Adaptive Radiation (Cranebrook Institute of Science, Bloomfield Hills, Mich., 1942).

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).

Wattam-Bell, J.

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

Weiss, S.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

Wertheim, T.

T. Wertheim, “Über die indirekte Sehschärfe,” Z. Psychol. Physiol. Sinnesorgane 7, 172–187 (1894).

White, E. K.

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

Wildsoet, C. F.

K. Schmid, C. F. Wildsoet, “Natural and imposed astigmatism and their relation to emmetropization in the chick,” Exp. Eye Res. 64, 837–847 (1997).
[CrossRef] [PubMed]

Wilhelm, B.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

Wilhelm, H.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).

Williams, D. D. R.

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

Williams, D. R.

Winawer, J.

J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.

Zadnik, K.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Zhu, X.

J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.

Zrenner, E.

F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).

Am. J. Ophthalmol. (1)

C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).

Am. J. Optom. Physiol. Opt. (2)

W. F. Harris, “Algebra of sphero-cylinders and refractive errors, and their means, variance, and standard deviation,” Am. J. Optom. Physiol. Opt. 65, 794–802 (1988).
[CrossRef] [PubMed]

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).
[PubMed]

Arch. Ophthalmol. (1)

C. R. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1931).
[CrossRef]

Exp. Eye Res. (1)

K. Schmid, C. F. Wildsoet, “Natural and imposed astigmatism and their relation to emmetropization in the chick,” Exp. Eye Res. 64, 837–847 (1997).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (4)

Y. Z. Wang, L. N. Thibos, A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Visual Sci. 38, 2134–2142 (1997).

D. O. Mutti, R. I. Sholtz, N. E. Friedman, K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

N. A. McBrien, P. Lawlor, A. Gentle, “Scleral remodelling during the development of and recovery from axial myopia in tree shrew,” Invest. Ophthalmol. Visual Sci. 41, 3713–3719 (2000).

A. Guirao, C. Gonzales, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Invest. Ophthalmol. Visual Sci. Suppl. (3)

J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, #1592 (ARVO abstract2000).

S. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Visual Sci. Suppl. 43, #189 (ARVO abstract2002).

R. C. McLean, J. Wallman, “Despite severe imposed astigmatic blur, chicks compensate for spectacle lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 38, #2521 (ARVO abstract1997).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

J. Physiol. (London) (2)

F. W. Fitzke, B. P. Hayes, W. Hodos, A. L. Holden, J. C. Low, “Refractive sectors in the visual field of the pigeon eye,” J. Physiol. (London) 369, 17–31 (1985).

F. Schaeffel, H. Wilhelm, E. Zrenner, “Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive error,” J. Physiol. (London) 461, 301–320 (1993).

Ophthalmic Physiol. Opt. (3)

M. C. Dunne, D. A. Barnes, R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7, 159–160 (1987).
[CrossRef] [PubMed]

M. C. Dunne, D. A. Barnes, “Modelling oblique astigma-tism in eyes with known peripheral refraction and optical dimensions,” Ophthalmic Physiol. Opt. 10, 46–48 (1990).
[CrossRef] [PubMed]

M. C. Dunne, G. P. Misson, E. K. White, D. A. Barnes, “Peripheral astigmatic asymmetry and the angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993).
[CrossRef] [PubMed]

Opththalmologica (1)

F. Rempt, J. Hooger-Heide, W. P. H. Hoogenboom , “Peripheral retinoscopy and the skiagram,” Opththalmologica 165, 1–10 (1971).
[CrossRef]

Optom. Vision Sci. (4)

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, H. Wilhelm, “Laboratory, clinical and kindergarten test of a new infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537–548 (2000).
[CrossRef]

F. Gekeler, F. Schaeffel, H. C. Howland, J. Wattam-Bell, “Measurement of astigmatism by automated infrared photorefraction,” Optom. Vision Sci. 74, 472–482 (1997).
[CrossRef]

F. Schaeffel, “Kappa and Hirschberg ratio measured with an automated video gaze tracker,” Optom. Vision Sci. 79, 329–334 (2002).
[CrossRef]

U. Oechsner, R. Kusel, “Multimeridional refraction: dependence of the measurement accuracy on the number of meridians refracted,” Optom. Vision Sci. 73, 425–433 (1997).
[CrossRef]

Science (1)

J. Wallman, M. D. Gottlieb, V. Rajaram, L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef] [PubMed]

Vision Res. (8)

S. Diether, F. Schaeffel, “Local defocus and local eye growth in chicks with normal accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

J. T. Siegwart, T. T. Norton, “Regulation of the mechanical properties of tree shrew sclera by the visual environment,” Vision Res. 39, 387–407 (1999).
[CrossRef] [PubMed]

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double-pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

J. G. Sivak, “An evaluation of the ‘ramp’ retina of the horse eye,” Vision Res. 15, 1353–1356 (1975).
[CrossRef] [PubMed]

D. D. R. Williams, P. Artal, R. Navarro, R. N. McMahon, D. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

J. A. M. Jennings, W. N. Charman, “Off-axis image quality of the human eye,” Vision Res. 21, 445–455 (1981).
[CrossRef]

W. Hodos, J. T. Erichsen, “Lower field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30, 653–659 (1990).
[CrossRef]

Z. Psychol. Physiol. Sinnesorgane (1)

T. Wertheim, “Über die indirekte Sehschärfe,” Z. Psychol. Physiol. Sinnesorgane 7, 172–187 (1894).

Other (5)

W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 321.

G. L. Walls, The Vertebrate Eye and Its Adaptive Radiation (Cranebrook Institute of Science, Bloomfield Hills, Mich., 1942).

E. L. Smith, J. Huang, L. F. Huang, “Cylindrical spectacle lenses alter emmetropization and produce astigmatism in young monkeys,” in Myopia Updates. Proceedings of the 6th International Conference on Myopia, T. Tokoro, ed. (Springer, Berlin, 1998), pp. 336–343.

A. Seidemann, A. Guirao, P. Artal, F. Schaeffel, “Peripheral sphere and astigmatism measured by infrared photoretinoscopy and by double pass point spread,” in Vision Science and Its Applications, Vol. 1 of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 224–227.

J. Wallman, J. Winawer, X. Zhu, T. W. Park, “Might myopic defocus prevent myopia?” in Proceedings of the 8th International Conference on Myopia, F. Thorn, D. Troilo, J. Gwiazda, eds. (Published by editors, Boston, Mass., 2000), pp. 138–142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of measurements with the double-pass technique and with photorefraction (the PowerRefractor). A, Spheres and cylinders recorded at four angular positions in two subjects. Open symbols, PowerRefractor; solid symbols, double-pass technique [no data with the double-pass technique at the fixation axis (0 deg)]. B, Measurements of spheres and cylinders in six subjects and at 15, 20, and 25 deg in the temporal retina (nasal visual field). The average absolute differences between the double-pass technique and the PowerRefractor were 0.78 D (spheres) and 0.85 D (cylinders). Angles of astigmatism were not evaluated since they were all close to 90 deg with both techniques.

Fig. 2
Fig. 2

Gray-level-coded maps of the average astigmatism (cross cylinder) and spherical equivalents (the refraction at the plane of the circle of the least confusion) in the central 44 deg of both eyes of the myopic (A, n18), emmetropic (B, n=8), and hyperopic groups (C, n=5). Coordinates are retinal coordinates, as seen from the vitreal side; the origin of each plot represents the fovea (black dot). The nasal retina is oriented toward the midline, as can be seen from the position of the optic disk, which shows up in the map of the spherical equivalents as an area of higher myopia. To facilitate intergroup comparisons, the foveal spherical equivalents and the cross cylinder were subtracted from the respective values measured in the periphery. For details on the averaging procedures for the refractions, and on the measurement of the pupil axis, see Section 2. Data in Figs. 2, 3, 4 originate from the PowerRefractor.

Fig. 3
Fig. 3

Average cross cylinders (A, C) and spherical equivalents (B, D) along the horizontal (A, B) and vertical (C, D) meridians of the retina, plotted with respect to the fovea. Open squares, myopes; solid triangles, emmetropes; open circles, hyperopes. Error bars denote standard deviations. Note the asymmetry in the cross cylinders (A), the location of the optic disk in the nasal retina (B), the symmetrical increase of astigmatism in the vertical meridian toward the periphery (C), and the slight increase of myopia from the lower to the upper retina (D) (corresponding to the lower visual field). For details on the averaging procedures, see Section 2.  

Fig. 4
Fig. 4

Orientation and magnitude of the average astigmatism in the myopic (A), emmetropic (B) and hyperopic (C) group. The orientation of the meridians of highest power are denoted by the orientations of the lines. Note that the power axes are approximately radially aligned, with their intersections closer to the pupil axes (circles) than to the fovea (crosses). The magnitude of the cylinders is indicated by the length of the individual lines (see dioptric scale at bottom). Refractions were sampled at 5.7, 8.3, 14.3, and 21.8 deg in the peripheral visual field. For details on the averaging procedures, see Section 2.

Fig. 5
Fig. 5

Peripheral refractive errors, relative to the foveal refractive error, in the myopic (A), emmetropic (B), and hyperopic groups (C). The dashed lines with open symbols are the spherical equivalents, and the top and bottom lines with solid symbols represent the extremes of the Sturm interval and denote the full amplitude of astigmatism. Data shown originate from measurements with the double-pass technique.

Fig. 6
Fig. 6

Comparisons of the spherical equivalents and the negative cylinders measured in this study with published data (sources are denoted in the legends). A, For comparison, all published refractions were converted into spherical equivalents. In particular, in the hyperopic group, more-myopic spherical equivalents were measured in the present study than in previous studies. B, Astigmatism was higher in the subjects of this study than in previous studies, except perhaps for the sample of Feree et al.35 The observed higher astigmatism could account in part for the more-myopic spherical equivalents.

Tables (1)

Tables Icon

Table 1 Difference between Refractions without and with Eye Torsion As Measured with the Double-Pass Technique a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

se,i=si+ci/2,
c1,i=(-ci/2)cos(2*ϕi),
c2,i=(-ci/2)sin(2*ϕi).
save=se+(c12+c22),
cave=-2c12+c22),
ϕave=0.5 arctan(c2/c1),

Metrics