Abstract

Spectral properties of a class of partially coherent light with spectral profiles of varying bandwidths are studied on diffraction by a circular aperture in the far zone for different diffractive angles, i.e., for on-axis and off-axis points on the observation plane. It is found that the spectrum of the light in the far zone is different from that at the aperture plane. This change in the spectrum is termed spectral shift, which is found to be different at different diffractive angles. The spectral shift for a fixed diffactive angle shows a gradual change. However, for a critical value of the coherence at the aperture plane, the spectral shift shows a rapid transition, termed spectral switch. For different diffractive angles the coherence that causes the spectral switch also differs. Therefore the phenomenon of 1×N spectral switch (consisting of one input port and N output ports) is studied experimentally.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
    [CrossRef] [PubMed]
  2. E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
    [CrossRef]
  3. E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
    [CrossRef] [PubMed]
  4. Z. Dacic, E. Wolf, “Changes in the spectrum of a partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988).
    [CrossRef]
  5. D. F. V. James, E. Wolf, “Spectral changes produced in Young’s interference experiment,” Opt. Commun. 81, 150–154 (1991).
    [CrossRef]
  6. D. F. V. James, E. Wolf, “Some aspects of Young’s interference experiment,” Phys. Lett. A 157, 6–10 (1991).
    [CrossRef]
  7. H. Arimoto, Y. Ohtsuka, “Correlation-induced spectral changes dependent upon spatiotemporal interference effects,” Opt. Rev. 3, 501–510 (1996).
    [CrossRef]
  8. F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
    [CrossRef]
  9. G. M. Morris, D. Faklis, “Spectral shifts produced by source correlations,” Opt. Commun. 62, 5–11 (1987).
    [CrossRef]
  10. G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
    [CrossRef]
  11. H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
    [CrossRef]
  12. A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
    [CrossRef]
  13. D. F. V. James, E. Wolf, “Determination of field corrections from spectral measurements with application to synthetic aperture imaging,” Radio Sci. 26, 1239–1243 (1991).
    [CrossRef]
  14. H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
    [CrossRef]
  15. D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
    [CrossRef]
  16. H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).
  17. E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).
  18. T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
    [CrossRef]
  19. J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
    [CrossRef]
  20. H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
    [CrossRef]
  21. J. Pu, S. Nemoto, “Spectral shift and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
    [CrossRef]
  22. H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
    [CrossRef]
  23. G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).
  24. G. Dogariu, A. Popescu, “Spectral anomalies at wavefront dislocations,” Phys. Rev. Lett. 88, 183902-1-4 (2002).
  25. J. T. Foley, E. Wolf, “The phenomenon of spectral switches as a new effect on singular optics with polychromatic light,” J. Opt. Soc. Am. A (to be published).
  26. J. Pu, S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339–344 (2002).
    [CrossRef]
  27. E. W. Marchand, E. Wolf, “Radiometry with sources of any state of coherence,” J. Opt. Soc. Am. 64, 1219–1226 (1974).
    [CrossRef]
  28. J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
    [CrossRef]

2002 (4)

H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
[CrossRef]

G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).

G. Dogariu, A. Popescu, “Spectral anomalies at wavefront dislocations,” Phys. Rev. Lett. 88, 183902-1-4 (2002).

J. Pu, S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339–344 (2002).
[CrossRef]

2001 (1)

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

2000 (1)

J. Pu, S. Nemoto, “Spectral shift and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

1999 (1)

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

1998 (1)

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

1997 (2)

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

1996 (1)

H. Arimoto, Y. Ohtsuka, “Correlation-induced spectral changes dependent upon spatiotemporal interference effects,” Opt. Rev. 3, 501–510 (1996).
[CrossRef]

1995 (3)

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

1991 (3)

D. F. V. James, E. Wolf, “Determination of field corrections from spectral measurements with application to synthetic aperture imaging,” Radio Sci. 26, 1239–1243 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Spectral changes produced in Young’s interference experiment,” Opt. Commun. 81, 150–154 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Some aspects of Young’s interference experiment,” Phys. Lett. A 157, 6–10 (1991).
[CrossRef]

1990 (1)

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

1989 (3)

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

1988 (2)

Z. Dacic, E. Wolf, “Changes in the spectrum of a partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988).
[CrossRef]

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

1987 (2)

G. M. Morris, D. Faklis, “Spectral shifts produced by source correlations,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

1986 (1)

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

1974 (1)

Anand, S.

H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
[CrossRef]

Arimoto, H.

H. Arimoto, Y. Ohtsuka, “Correlation-induced spectral changes dependent upon spatiotemporal interference effects,” Opt. Rev. 3, 501–510 (1996).
[CrossRef]

Chen, H.

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

Dacic, Z.

Dogariu, G.

G. Dogariu, A. Popescu, “Spectral anomalies at wavefront dislocations,” Phys. Rev. Lett. 88, 183902-1-4 (2002).

Faklis, D.

G. M. Morris, D. Faklis, “Spectral shifts produced by source correlations,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

Foley, J. T.

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

J. T. Foley, E. Wolf, “The phenomenon of spectral switches as a new effect on singular optics with polychromatic light,” J. Opt. Soc. Am. A (to be published).

Gbur, G.

G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).

Gopal, E. S. R.

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

Gori, F.

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Guattari, G.

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

James, D. F. V.

D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
[CrossRef]

D. F. V. James, E. Wolf, “Determination of field corrections from spectral measurements with application to synthetic aperture imaging,” Radio Sci. 26, 1239–1243 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Spectral changes produced in Young’s interference experiment,” Opt. Commun. 81, 150–154 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Some aspects of Young’s interference experiment,” Phys. Lett. A 157, 6–10 (1991).
[CrossRef]

Joshi, K. C.

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Kandpal, H. C.

H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
[CrossRef]

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
[CrossRef]

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Marchand, E. W.

Mehta, D. S.

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

Morris, G. M.

G. M. Morris, D. Faklis, “Spectral shifts produced by source correlations,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

Nemoto, S.

J. Pu, S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339–344 (2002).
[CrossRef]

J. Pu, S. Nemoto, “Spectral shift and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Ohtsuka, Y.

H. Arimoto, Y. Ohtsuka, “Correlation-induced spectral changes dependent upon spatiotemporal interference effects,” Opt. Rev. 3, 501–510 (1996).
[CrossRef]

Padovani, C.

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Palma, C.

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Popescu, A.

G. Dogariu, A. Popescu, “Spectral anomalies at wavefront dislocations,” Phys. Rev. Lett. 88, 183902-1-4 (2002).

Pu, J.

J. Pu, S. Nemoto, “Spectral changes and 1×N spectral switches in the diffraction of partially coherent light by an aperture,” J. Opt. Soc. Am. A 19, 339–344 (2002).
[CrossRef]

J. Pu, S. Nemoto, “Spectral shift and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Sagar, R.

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

Sanwal, B. B.

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

Saxena, K.

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

Shirai, T.

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

Singh, M.

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

Vaishya, J. S.

H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
[CrossRef]

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Visser, T. D.

G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).

Wang, W.

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

Wasan, A.

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

Wolf, E.

G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
[CrossRef]

D. F. V. James, E. Wolf, “Determination of field corrections from spectral measurements with application to synthetic aperture imaging,” Radio Sci. 26, 1239–1243 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Some aspects of Young’s interference experiment,” Phys. Lett. A 157, 6–10 (1991).
[CrossRef]

D. F. V. James, E. Wolf, “Spectral changes produced in Young’s interference experiment,” Opt. Commun. 81, 150–154 (1991).
[CrossRef]

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

Z. Dacic, E. Wolf, “Changes in the spectrum of a partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988).
[CrossRef]

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

E. W. Marchand, E. Wolf, “Radiometry with sources of any state of coherence,” J. Opt. Soc. Am. 64, 1219–1226 (1974).
[CrossRef]

J. T. Foley, E. Wolf, “The phenomenon of spectral switches as a new effect on singular optics with polychromatic light,” J. Opt. Soc. Am. A (to be published).

Zhang, H.

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Astrophys. J. (1)

D. F. V. James, H. C. Kandpal, E. Wolf, “A new method for determining the angular separation of double stars,” Astrophys. J. 445, 406–410 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Pu, S. Nemoto, “Spectral shift and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

H. C. Kandpal, S. Anand, J. S. Vaishya, “Experimental observation of the phenomenon of spectral switch for a class of partially coherent light,” IEEE J. Quantum Electron. 38, 336–339 (2002).
[CrossRef]

Indian J. Pure Appl. Phys. (1)

H. C. Kandpal, A. Wasan, J. S. Vaishya, E. S. R. Gopal, M. Singh, B. B. Sanwal, R. Sagar, “Application of spatial-coherence spectroscopy for determining the angular diameters of stars: feasibility experiment,” Indian J. Pure Appl. Phys. 36, 665–674 (1998).

J. Mod. Opt. (4)

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1997).
[CrossRef]

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

H. C. Kandpal, D. S. Mehta, K. Saxena, J. S. Vaishya, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nature (1)

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

Opt. Commun. (7)

D. F. V. James, E. Wolf, “Spectral changes produced in Young’s interference experiment,” Opt. Commun. 81, 150–154 (1991).
[CrossRef]

F. Gori, G. Guattari, C. Palma, C. Padovani, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

G. M. Morris, D. Faklis, “Spectral shifts produced by source correlations,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

Opt. Rev. (1)

H. Arimoto, Y. Ohtsuka, “Correlation-induced spectral changes dependent upon spatiotemporal interference effects,” Opt. Rev. 3, 501–510 (1996).
[CrossRef]

Phys. Lett. A (1)

D. F. V. James, E. Wolf, “Some aspects of Young’s interference experiment,” Phys. Lett. A 157, 6–10 (1991).
[CrossRef]

Phys. Rev. Lett. (4)

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

G. Gbur, T. D. Visser, E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901-1-4 (2002).

G. Dogariu, A. Popescu, “Spectral anomalies at wavefront dislocations,” Phys. Rev. Lett. 88, 183902-1-4 (2002).

Radio Sci. (1)

D. F. V. James, E. Wolf, “Determination of field corrections from spectral measurements with application to synthetic aperture imaging,” Radio Sci. 26, 1239–1243 (1991).
[CrossRef]

Other (1)

J. T. Foley, E. Wolf, “The phenomenon of spectral switches as a new effect on singular optics with polychromatic light,” J. Opt. Soc. Am. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the system configurations and the experimental setup.

Fig. 2
Fig. 2

For the experimental parameters as=0.5×10-3 m, f=0.20 m, s=0.91, and υ=0, curve A is the spectrum of the source S(0)(ω) calculated theoretically by using S(0)(ω)=S0Γ2/[(ω-ω¯)2+Γ2], and curve B is its experimentally observed spectrum. Curve C is the on-axis spectrum S(z, ω) calculated theoretically by using the spectrum of the source S(0)(ω) in Eq. (3), and curve D is its experimentally observed spectrum. a/L(ω¯), ω¯, and Γ=0.45×1015 s-1 are given in each plot. Curves C and D in (a) and (c) show the switching action and in (b) show the splitting of the spectral line into two peaks of equal height.

Fig. 3
Fig. 3

For the experimental parameters as=0.5×10-3 m, f=0.20 m, s=0.91, and υ=0.1, curve A is the spectrum of the source S(0)(ω) calculated theoretically by using S(0)(ω)=S0Γ2/[(ω-ω¯)2+Γ2], and curve B is its experimentally observed spectrum. Curve C is the off-axis spectrum S(υ, ω) calculated theoretically by using the spectrum of the source S(0)(ω) in Eq. (3), and curve D is its experimentally observed spectrum. a/L(ω¯), ω¯, and Γ=0.45×1015 s-1 are given in each plot. Curves C and D in (a) and (c) show the switching action and in (b) show the splitting of the spectral line into two peaks of equal height.

Fig. 4
Fig. 4

For the experimental parameters as=0.5×10-3 m, f=0.20 m, s=0.91, and υ=0.15, curve A is the spectrum of the source S(0)(ω) calculated theoretically by using S(0)(ω)=S0Γ2/[(ω-ω¯)2+Γ2], and curve B is its experimentally observed spectrum. Curve C is the off-axis spectrum S(υ, ω) calculated theoretically by using the spectrum of the source S(0)(ω) in Eq. (3), and curve D is its experimentally observed spectrum. a/L(ω¯), ω¯, and Γ=0.45×1015 s-1 are given in each plot. Curves C and D in (a) and (c) show the switching action and in (b) show the splitting of the spectral line into two peaks of equal height.

Fig. 5
Fig. 5

For the experimental parameters as=0.5×10-3 m, f=0.20 m, s=0.91, and υ=0.1, curve A is the spectrum of the source S(0)(ω) calculated theoretically by using S(0)(ω)=S0Γ2/[(ω-ω¯)2+Γ2], and curve B is its experimentally observed spectrum. Curve C is the on-axis spectrum S(υ, ω) calculated theoretically by using the spectrum of the source S(0)(ω) in Eq. (3), and curve D is its experimentally observed spectrum. a/L(ω¯), ω¯, and Γ=0.15×1015 s-1 are given in each plot. Curves C and D in (a) and (c) show the switching action and in (b) show the splitting of the spectral line into two peaks of equal height.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S(r, z, ω)=2S(0)(ω)ka2z2×11-s201C(u)besinc2kaasf u×J02karz uudu-s21-s201C(u)besinc2kaassf u×J02kar2 uudu,
C(u)=(2/π)[cos-1(u)-u(1-u2)1/2].
S(υ, ω)=2S(0)(ω)ka2z211-s2×01C(u)besinc7.664aL¯ωω¯u×J07.664ωω¯uυudu-s21-s2×01C(u)besinc7.664aL¯ωω¯su×J07.664ωω¯uυudu.
υ=r/a¯1;
a¯1=3.832(z/k¯a).

Metrics