Abstract

We measured the lowest velocity (velocity threshold) for discriminating motion direction in relative and uniform motion stimuli, varying the contrast and the spatial frequency of the stimulus gratings. The results showed significant differences in the effects of contrast and spatial frequency on the threshold, as well as on the absolute threshold level between the two motion conditions, except when the contrast was 1% or lower. Little effect of spatial frequency was found for uniform motion, whereas a bandpass property with a peak at approximately 5 cycles per degree was found for relative motion. It was also found that contrast had little effect on uniform motion, whereas the threshold decreased with increases in contrast up to 85% for relative motion. These differences cannot be attributed to possible differences in eye movements between the relative and the uniform motion conditions, because the spatial-frequency characteristics differed in the two conditions even when the presentation duration was short enough to prevent eye movements. The differences also cannot be attributed to detecting positional changes, because the velocity threshold was not determined by the total distance of the stimulus movements. These results suggest that there are two different motion pathways: one that specializes in relative motion and one that specializes in uniform or global motion. A simulation showed that the difference in the response functions of the two possible pathways accounts for the differences in the spatial-frequency and contrast dependency of the velocity threshold.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
    [Crossref] [PubMed]
  2. J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
    [Crossref] [PubMed]
  3. J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
    [Crossref] [PubMed]
  4. I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
    [Crossref] [PubMed]
  5. M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperativity,” Vision Res. 30, 1439–1451 (1990).
    [Crossref] [PubMed]
  6. R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
    [Crossref] [PubMed]
  7. A. B. Watson, M. P. Eckert, “Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies,” J. Opt. Soc. Am. A 11, 496–505 (1994).
    [Crossref]
  8. P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
    [Crossref]
  9. H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
    [Crossref] [PubMed]
  10. H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
    [Crossref]
  11. H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
    [Crossref]
  12. R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
    [Crossref]
  13. I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
    [Crossref] [PubMed]
  14. A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
    [Crossref]
  15. A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
    [Crossref] [PubMed]
  16. E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
    [Crossref] [PubMed]
  17. M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
    [Crossref] [PubMed]
  18. M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
    [Crossref]
  19. N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
    [Crossref] [PubMed]
  20. N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
    [Crossref] [PubMed]
  21. N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
    [Crossref] [PubMed]
  22. B. Frost, “Neural mechanisms for detecting object motion and figure–ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Lee, ed. (Nijhoff, Dordrecht, The Netherlands, 1985), pp. 415–448.
  23. B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
    [Crossref] [PubMed]
  24. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  25. M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
    [Crossref]
  26. A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
    [Crossref] [PubMed]
  27. D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
    [Crossref] [PubMed]
  28. S. Shioiri, H. Ono, T. Sato, “Adaptation to relative and uniform motion,” J. Opt. Soc. Am. A 19, 1465–1474 (2002).
    [Crossref]
  29. R. T. Born, R. B. Tootell, “Segregation of global and local motion processing in primate middle temporal visual area,” Nature (London) 357, 497–499 (1992).
    [Crossref]
  30. P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
    [Crossref] [PubMed]
  31. G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).
  32. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [Crossref] [PubMed]
  33. Y. Yang, R. Blake, “Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion,” Nature (London) 371, 793–796 (1994).
    [Crossref]
  34. S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
    [Crossref] [PubMed]
  35. P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
    [Crossref] [PubMed]
  36. E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
    [Crossref] [PubMed]
  37. D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
    [Crossref]
  38. R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
    [Crossref] [PubMed]
  39. D. M. Levi, C. M. Schor, “Spatial and velocity tuning of processes underlying induced motion,” Vision Res. 24, 1189–1195 (1984).
    [Crossref] [PubMed]
  40. J. E. Raymond, S. M. Darcangelo, “The effect of local luminance contrast on induced motion,” Vision Res. 30, 751–756 (1990).
    [Crossref] [PubMed]
  41. S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
    [Crossref] [PubMed]
  42. K. Nakayama, G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
    [Crossref] [PubMed]
  43. M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
    [Crossref] [PubMed]
  44. A. Johnston, M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
    [Crossref] [PubMed]
  45. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
    [Crossref]
  46. A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
    [Crossref] [PubMed]
  47. C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).
  48. E. Baumgardt, “Threshold quantal problems,” in Visual Psychophysics, L. M. Hurvich, ed. (Springer-Verlag, Berlin, 1972), pp. 29–55.
  49. H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
    [Crossref] [PubMed]
  50. C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
    [Crossref]
  51. J. C. Boulton, “Two mechanisms for the detection of slow motion,” J. Opt. Soc. Am. A 4, 1634–1642 (1987).
    [Crossref] [PubMed]
  52. R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
    [Crossref] [PubMed]
  53. J. Yang, S. B. Stevenson, “Effects of spatial frequency, duration, and contrast on discriminating motion directions,” J. Opt. Soc. Am. A 14, 2041–2048 (1997).
    [Crossref]
  54. M. G. Harris, “The role of pattern and flicker mechanisms in determining the spatiotemporal limits of velocity perception. 1. Upper movement thresholds,” Perception 13, 401–407 (1984).
    [Crossref] [PubMed]
  55. V. Bruce, P. R. Green, M. A. Georgeson, Visual Perception Physiology, Psychology, and Ecology, 3rd ed. (Psychology Press, East Sussex, UK, 1997).
  56. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [Crossref] [PubMed]
  57. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–341 (1985).
    [Crossref] [PubMed]
  58. G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
    [Crossref] [PubMed]
  59. M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
    [Crossref] [PubMed]
  60. W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
    [Crossref] [PubMed]
  61. C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
    [Crossref] [PubMed]
  62. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [Crossref] [PubMed]
  63. S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
    [Crossref]
  64. T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
    [Crossref] [PubMed]
  65. I. Murakami, P. Cavanagh, “Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements,” Vision Res. 41, 173–186 (2001).
    [Crossref] [PubMed]
  66. I. Murakami, P. Cavanagh, “A jitter after-effect reveals motion-based stabilization of vision,” Nature (London) 395, 798–801 (1998).
    [Crossref]
  67. E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (Macmillan, London, 1991), pp. 71–92.
  68. D. H. Kelly, “Visual processing of moving stimuli,” J. Opt. Soc. Am. A 2, 216–225 (1985).
    [Crossref] [PubMed]
  69. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [Crossref] [PubMed]
  70. S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
    [Crossref] [PubMed]

2002 (1)

2001 (2)

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[Crossref] [PubMed]

I. Murakami, P. Cavanagh, “Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements,” Vision Res. 41, 173–186 (2001).
[Crossref] [PubMed]

2000 (3)

T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
[Crossref] [PubMed]

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[Crossref] [PubMed]

1998 (3)

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[Crossref] [PubMed]

I. Murakami, P. Cavanagh, “A jitter after-effect reveals motion-based stabilization of vision,” Nature (London) 395, 798–801 (1998).
[Crossref]

C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
[Crossref] [PubMed]

1997 (5)

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[Crossref] [PubMed]

H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
[Crossref] [PubMed]

J. Yang, S. B. Stevenson, “Effects of spatial frequency, duration, and contrast on discriminating motion directions,” J. Opt. Soc. Am. A 14, 2041–2048 (1997).
[Crossref]

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[Crossref] [PubMed]

1996 (5)

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[Crossref]

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[Crossref] [PubMed]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[Crossref] [PubMed]

M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
[Crossref] [PubMed]

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[Crossref]

1995 (3)

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[Crossref]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[Crossref] [PubMed]

1994 (3)

A. B. Watson, M. P. Eckert, “Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies,” J. Opt. Soc. Am. A 11, 496–505 (1994).
[Crossref]

Y. Yang, R. Blake, “Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[Crossref]

M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
[Crossref] [PubMed]

1993 (3)

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[Crossref] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[Crossref] [PubMed]

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[Crossref] [PubMed]

1992 (5)

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[Crossref] [PubMed]

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[Crossref] [PubMed]

R. T. Born, R. B. Tootell, “Segregation of global and local motion processing in primate middle temporal visual area,” Nature (London) 357, 497–499 (1992).
[Crossref]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[Crossref] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[Crossref]

1991 (2)

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[Crossref]

1990 (3)

J. E. Raymond, S. M. Darcangelo, “The effect of local luminance contrast on induced motion,” Vision Res. 30, 751–756 (1990).
[Crossref] [PubMed]

G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[Crossref] [PubMed]

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperativity,” Vision Res. 30, 1439–1451 (1990).
[Crossref] [PubMed]

1988 (3)

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[Crossref]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[Crossref] [PubMed]

1987 (1)

1986 (2)

S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
[Crossref] [PubMed]

D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
[Crossref]

1985 (7)

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[Crossref] [PubMed]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

D. H. Kelly, “Visual processing of moving stimuli,” J. Opt. Soc. Am. A 2, 216–225 (1985).
[Crossref] [PubMed]

E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[Crossref] [PubMed]

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–341 (1985).
[Crossref] [PubMed]

A. Johnston, M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
[Crossref] [PubMed]

K. Nakayama, G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
[Crossref] [PubMed]

1984 (4)

D. M. Levi, C. M. Schor, “Spatial and velocity tuning of processes underlying induced motion,” Vision Res. 24, 1189–1195 (1984).
[Crossref] [PubMed]

M. G. Harris, “The role of pattern and flicker mechanisms in determining the spatiotemporal limits of velocity perception. 1. Upper movement thresholds,” Perception 13, 401–407 (1984).
[Crossref] [PubMed]

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[Crossref] [PubMed]

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[Crossref] [PubMed]

1983 (1)

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[Crossref] [PubMed]

1981 (1)

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[Crossref] [PubMed]

1979 (1)

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
[Crossref] [PubMed]

1977 (1)

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[Crossref] [PubMed]

1976 (2)

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[Crossref]

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[Crossref]

1975 (1)

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[Crossref] [PubMed]

1974 (1)

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[Crossref]

1973 (1)

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[Crossref] [PubMed]

1971 (1)

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[Crossref]

1961 (1)

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Adelson, E. H.

Ahumada, A. J.

Andersen, R. A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

Anderson, S. J.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[Crossref] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

Aronchick, D. M.

H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
[Crossref] [PubMed]

Ashida, H.

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[Crossref] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[Crossref]

Badcock, D. R.

M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
[Crossref] [PubMed]

Baker, C. L.

T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
[Crossref] [PubMed]

C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
[Crossref] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[Crossref] [PubMed]

Baumgardt, E.

E. Baumgardt, “Threshold quantal problems,” in Visual Psychophysics, L. M. Hurvich, ed. (Springer-Verlag, Berlin, 1972), pp. 29–55.

Bell, H. H.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[Crossref]

Berbaoum, K.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[Crossref] [PubMed]

Bergen, J. R.

Bex, P. J.

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[Crossref] [PubMed]

Blake, R.

Y. Yang, R. Blake, “Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[Crossref]

Born, R. T.

R. T. Born, R. B. Tootell, “Segregation of global and local motion processing in primate middle temporal visual area,” Nature (London) 357, 497–499 (1992).
[Crossref]

Boulton, J. C.

C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
[Crossref] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[Crossref] [PubMed]

J. C. Boulton, “Two mechanisms for the detection of slow motion,” J. Opt. Soc. Am. A 4, 1634–1642 (1987).
[Crossref] [PubMed]

Bruce, V.

V. Bruce, P. R. Green, M. A. Georgeson, Visual Perception Physiology, Psychology, and Ecology, 3rd ed. (Psychology Press, East Sussex, UK, 1997).

Burr, C. D.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[Crossref]

Burr, D. C.

D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
[Crossref]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[Crossref] [PubMed]

Cameron, E. L.

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[Crossref] [PubMed]

Cavanagh, P.

I. Murakami, P. Cavanagh, “Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements,” Vision Res. 41, 173–186 (2001).
[Crossref] [PubMed]

I. Murakami, P. Cavanagh, “A jitter after-effect reveals motion-based stabilization of vision,” Nature (London) 395, 798–801 (1998).
[Crossref]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

Cropper, S. J.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[Crossref]

Darcangelo, S. M.

J. E. Raymond, S. M. Darcangelo, “The effect of local luminance contrast on induced motion,” Vision Res. 30, 751–756 (1990).
[Crossref] [PubMed]

Day, R. H.

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[Crossref] [PubMed]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[Crossref]

De Bruyn, B.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

Derrington, A. M.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[Crossref]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[Crossref] [PubMed]

Donnelly, M. P.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[Crossref] [PubMed]

Dupont, P.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Eckert, M. P.

Edwards, M.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[Crossref] [PubMed]

M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
[Crossref] [PubMed]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

Fendrich, R.

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
[Crossref] [PubMed]

Frost, B.

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[Crossref] [PubMed]

B. Frost, “Neural mechanisms for detecting object motion and figure–ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Lee, ed. (Nijhoff, Dordrecht, The Netherlands, 1985), pp. 415–448.

Georgeson, M. A.

V. Bruce, P. R. Green, M. A. Georgeson, Visual Perception Physiology, Psychology, and Ecology, 3rd ed. (Psychology Press, East Sussex, UK, 1997).

Golomb, B.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

Green, P. R.

V. Bruce, P. R. Green, M. A. Georgeson, Visual Perception Physiology, Psychology, and Ecology, 3rd ed. (Psychology Press, East Sussex, UK, 1997).

Hammond, P.

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[Crossref] [PubMed]

Harris, M. G.

M. G. Harris, “The role of pattern and flicker mechanisms in determining the spatiotemporal limits of velocity perception. 1. Upper movement thresholds,” Perception 13, 401–407 (1984).
[Crossref] [PubMed]

Henning, G. B.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[Crossref] [PubMed]

Hubel, D.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[Crossref] [PubMed]

Hughes, H. C.

H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
[Crossref] [PubMed]

Johnson, C. A.

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[Crossref] [PubMed]

Johnston, A.

A. Johnston, M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
[Crossref] [PubMed]

Johnston, C. A.

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[Crossref]

Kelly, D. H.

Kojima, H.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[Crossref] [PubMed]

Kowler, E.

E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (Macmillan, London, 1991), pp. 71–92.

Lappin, J. S.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[Crossref] [PubMed]

Ledgeway, T.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[Crossref] [PubMed]

Lehmkuhle, S. W.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[Crossref]

Leibowitz, H. W.

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[Crossref]

Lennie, P.

G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[Crossref] [PubMed]

Levi, D. M.

D. M. Levi, C. M. Schor, “Spatial and velocity tuning of processes underlying induced motion,” Vision Res. 24, 1189–1195 (1984).
[Crossref] [PubMed]

Livingstone, M.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[Crossref] [PubMed]

Loomis, J. M.

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[Crossref] [PubMed]

Mack, A.

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
[Crossref] [PubMed]

MacLeod, D. I.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

Maguire, W.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[Crossref] [PubMed]

Mahon, L. E.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

Marchal, G.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

Mareschal, I.

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[Crossref] [PubMed]

Maunsell, J. H.

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[Crossref] [PubMed]

G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[Crossref] [PubMed]

McKee, S. P.

S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
[Crossref] [PubMed]

Merigan, W. H.

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[Crossref] [PubMed]

Michiels, J.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

Morrone, M. C.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[Crossref]

D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
[Crossref]

Mortelmans, L.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Mullen, K. T.

T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
[Crossref] [PubMed]

C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
[Crossref] [PubMed]

Murakami, I.

I. Murakami, P. Cavanagh, “Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements,” Vision Res. 41, 173–186 (2001).
[Crossref] [PubMed]

I. Murakami, P. Cavanagh, “A jitter after-effect reveals motion-based stabilization of vision,” Nature (London) 395, 798–801 (1998).
[Crossref]

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[Crossref] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[Crossref] [PubMed]

Musselwhite, M. J.

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[Crossref] [PubMed]

Nakayama, K.

S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
[Crossref] [PubMed]

K. Nakayama, G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
[Crossref] [PubMed]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[Crossref] [PubMed]

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[Crossref] [PubMed]

Nawrot, M.

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperativity,” Vision Res. 30, 1439–1451 (1990).
[Crossref] [PubMed]

Nelson, M. D.

H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
[Crossref] [PubMed]

Newsome, W. T.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Nishida, S.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[Crossref] [PubMed]

M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
[Crossref] [PubMed]

Ono, H.

Orban, G. A.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Osaka, N.

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[Crossref]

Pare, E. B.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[Crossref]

Pleune, J.

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
[Crossref] [PubMed]

Powell, D. J.

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[Crossref]

Rashbass, C.

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Raymond, J. E.

J. E. Raymond, S. M. Darcangelo, “The effect of local luminance contrast on induced motion,” Vision Res. 30, 751–756 (1990).
[Crossref] [PubMed]

Reinhardt-Rutland, A. H.

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[Crossref]

Rosier, A. M.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

Ross, J.

D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
[Crossref]

Sato, T.

Schor, C. M.

D. M. Levi, C. M. Schor, “Spatial and velocity tuning of processes underlying induced motion,” Vision Res. 24, 1189–1195 (1984).
[Crossref] [PubMed]

Sclar, G.

G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[Crossref] [PubMed]

Scobey, R. P.

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[Crossref] [PubMed]

Scott-Samuel, N. E.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[Crossref] [PubMed]

Sekular, R.

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[Crossref] [PubMed]

Sekuler, R.

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperativity,” Vision Res. 30, 1439–1451 (1990).
[Crossref] [PubMed]

Shimojo, S.

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[Crossref] [PubMed]

Shioiri, S.

Silvano-Pardieu, V.

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[Crossref] [PubMed]

Silverman, G. H.

S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
[Crossref] [PubMed]

K. Nakayama, G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
[Crossref] [PubMed]

Singh, K. D.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[Crossref] [PubMed]

Smith, A. T.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[Crossref] [PubMed]

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[Crossref] [PubMed]

Snowden, R. J.

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[Crossref] [PubMed]

Spillmann, L.

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[Crossref] [PubMed]

Stevenson, S. B.

Stone, L. S.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[Crossref] [PubMed]

Strelow, E. R.

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[Crossref] [PubMed]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[Crossref]

Susami, K.

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[Crossref] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[Crossref]

Swanston, M. T.

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[Crossref] [PubMed]

M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
[Crossref] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[Crossref]

Thompson, P.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[Crossref] [PubMed]

Tootell, R. B.

R. T. Born, R. B. Tootell, “Segregation of global and local motion processing in primate middle temporal visual area,” Nature (London) 357, 497–499 (1992).
[Crossref]

Vaina, L. M.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[Crossref]

Vandenberghe, R.

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Verstraten, F. A.

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[Crossref] [PubMed]

Vogels, R.

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Wade, N.

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[Crossref] [PubMed]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[Crossref] [PubMed]

Wade, N. J.

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[Crossref]

Walker, P.

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[Crossref]

Watson, A. B.

Weisstein, N.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[Crossref] [PubMed]

Westendorf, D. H.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[Crossref]

Williams, D. W.

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[Crossref] [PubMed]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

Wong, A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

Wright, M. J.

A. Johnston, M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
[Crossref] [PubMed]

Yang, J.

Yang, Y.

Y. Yang, R. Blake, “Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[Crossref]

Yoshizawa, T.

T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
[Crossref] [PubMed]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[Crossref]

Annu. Rev. Neurosci. (1)

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[Crossref] [PubMed]

Cereb. Cortex (1)

P. Dupont, B. De Bruyn, R. Vandenberghe, A. M. Rosier, J. Michiels, G. Marchal, L. Mortelmans, G. A. Orban, “The kinetic occipital region in human visual cortex,” Cereb. Cortex 7, 283–292 (1997).
[Crossref] [PubMed]

Curr. Psychol. Res. Rev. (1)

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[Crossref]

J. Neurosci. (1)

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

J. Opt. Soc. Am. A (8)

J. Physiol. (London) (1)

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Nature (London) (7)

I. Murakami, P. Cavanagh, “A jitter after-effect reveals motion-based stabilization of vision,” Nature (London) 395, 798–801 (1998).
[Crossref]

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[Crossref]

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[Crossref]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[Crossref]

R. T. Born, R. B. Tootell, “Segregation of global and local motion processing in primate middle temporal visual area,” Nature (London) 357, 497–499 (1992).
[Crossref]

Y. Yang, R. Blake, “Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[Crossref]

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[Crossref]

Percept. Psychophys. (1)

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[Crossref]

Perception (8)

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[Crossref] [PubMed]

M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
[Crossref] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[Crossref]

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[Crossref] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[Crossref]

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[Crossref] [PubMed]

M. G. Harris, “The role of pattern and flicker mechanisms in determining the spatiotemporal limits of velocity perception. 1. Upper movement thresholds,” Perception 13, 401–407 (1984).
[Crossref] [PubMed]

H. C. Hughes, D. M. Aronchick, M. D. Nelson, “Spatial scale interactions and visual-tracking performance,” Perception 26, 1047–1058 (1997).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. A. Orban, P. Dupont, B. De Bruyn, R. Vogels, R. Vandenberghe, L. Mortelmans, “A motion area in human visual cortex,” Proc. Natl. Acad. Sci. USA 92, 993–997 (1995).

Proc. R. Soc. London Ser. B (1)

D. C. Burr, J. Ross, M. C. Morrone, “Seeing objects in motion,” Proc. R. Soc. London Ser. B 227, 249–265 (1986).
[Crossref]

Science (4)

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[Crossref] [PubMed]

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: is perceived motion necessary?” Science 203, 1361–1363 (1979).
[Crossref] [PubMed]

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[Crossref] [PubMed]

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[Crossref] [PubMed]

Vision Res. (31)

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[Crossref] [PubMed]

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[Crossref] [PubMed]

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[Crossref] [PubMed]

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[Crossref] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[Crossref] [PubMed]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[Crossref] [PubMed]

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[Crossref] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[Crossref] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[Crossref] [PubMed]

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperativity,” Vision Res. 30, 1439–1451 (1990).
[Crossref] [PubMed]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[Crossref] [PubMed]

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[Crossref] [PubMed]

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[Crossref] [PubMed]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[Crossref] [PubMed]

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[Crossref] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[Crossref] [PubMed]

S. P. McKee, G. H. Silverman, K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vision Res. 26, 609–619 (1986).
[Crossref] [PubMed]

G. Sclar, J. H. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[Crossref] [PubMed]

T. Yoshizawa, K. T. Mullen, C. L. Baker, “Absence of a chromatic linear motion mechanism in human vision,” Vision Res. 40, 1993–2010 (2000).
[Crossref] [PubMed]

I. Murakami, P. Cavanagh, “Visual jitter: evidence for visual-motion-based compensation of retinal slip due to small eye movements,” Vision Res. 41, 173–186 (2001).
[Crossref] [PubMed]

C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998).
[Crossref] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[Crossref] [PubMed]

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[Crossref]

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[Crossref] [PubMed]

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity,” Vision Res. 40, 3685–3702 (2000).
[Crossref] [PubMed]

D. M. Levi, C. M. Schor, “Spatial and velocity tuning of processes underlying induced motion,” Vision Res. 24, 1189–1195 (1984).
[Crossref] [PubMed]

J. E. Raymond, S. M. Darcangelo, “The effect of local luminance contrast on induced motion,” Vision Res. 30, 751–756 (1990).
[Crossref] [PubMed]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[Crossref] [PubMed]

M. Edwards, D. R. Badcock, S. Nishida, “Contrast sensitivity of the motion system,” Vision Res. 36, 2411–2421 (1996).
[Crossref] [PubMed]

A. Johnston, M. J. Wright, “Lower thresholds of motion for gratings as a function of eccentricity and contrast,” Vision Res. 25, 179–185 (1985).
[Crossref] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[Crossref]

Other (4)

E. Baumgardt, “Threshold quantal problems,” in Visual Psychophysics, L. M. Hurvich, ed. (Springer-Verlag, Berlin, 1972), pp. 29–55.

V. Bruce, P. R. Green, M. A. Georgeson, Visual Perception Physiology, Psychology, and Ecology, 3rd ed. (Psychology Press, East Sussex, UK, 1997).

E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (Macmillan, London, 1991), pp. 71–92.

B. Frost, “Neural mechanisms for detecting object motion and figure–ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Lee, ed. (Nijhoff, Dordrecht, The Netherlands, 1985), pp. 415–448.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the stimuli. The gratings of the two bands moved (a) in the same direction in the uniform motion condition and (b) in opposite directions in the relative motion condition. Arrows indicate the motion direction of the gratings. The actual direction varied from trial to trial.

Fig. 2
Fig. 2

Velocity thresholds as a function of spatial frequency with the 1-deg-band stimulus. Each plot shows the result for each contrast of the stimulus grating. The open symbols represent threshold data in the relative motion condition, and the filled symbols represent those in the uniform motion condition. Error bars, attached to data in some condition as examples, indicate the 95% confidence interval obtained from the variance estimated by Probit analysis for the reciprocal value of the slope of the cumulated normal distribution function fitted to the data.

Fig. 3
Fig. 3

Velocity thresholds as a function of contrast with the 1-deg-band stimulus. Each plot shows the result for each spatial frequency of the stimulus grating. The open symbols represent threshold data in the relative motion condition, and the filled symbols represent those in the uniform motion condition.

Fig. 4
Fig. 4

Velocity thresholds as a function of spatial frequency with the 0.06-deg-band stimulus. Each plot shows the result for each contrast of the stimulus grating. The open symbols represent thresholds in the relative motion condition, and the filled symbols represent those in the uniform motion condition.

Fig. 5
Fig. 5

Velocity thresholds as a function of contrast with the 0.06-deg-band stimulus. Each plot shows the result for each spatial frequency of the stimulus grating. The open symbols represent the thresholds in the relative motion condition, and the filled symbols represent those in the uniform motion condition.

Fig. 6
Fig. 6

Velocity thresholds as a function of spatial frequency for long (left) and short (right) presentations. The top plots show the results for observer KS, and the bottom plots do so for observer DK. The open symbols represent thresholds in the relative motion condition, and the filled symbols represent those in the uniform motion condition. Error bars, attached to data in some conditions as examples, indicate the 95% confidence interval obtained from the variance estimated by Probit analysis for the point of 75% correction.

Fig. 7
Fig. 7

Ratio of velocity threshold in the uniform motion condition to that in the relative motion condition as a function of spatial frequency. The open symbols represent the results for the long presentation, and the filled symbols represent those in the short presentation.

Fig. 8
Fig. 8

(a) Velocity thresholds as a function of presentation duration. The top plot shows the results with 85% contrast stimulus, and the bottom plot shows those with 10% contrast stimulus. The open symbols represent the thresholds in the relative motion condition, and the filled symbols represent those in the uniform motion condition. The circles represent the results of KS, and the triangles represent those of DK. (b) Displacement thresholds as a function of presentation duration. The threshold in (a) is replotted as the total distance of movement during the presentation. Symbols are the same as those in (a).

Fig. 9
Fig. 9

Velocity thresholds as a function of (a) bandwidth and (b) band height for two observers. The open symbols represent the results for relative motion, and the filled symbols for uniform motion. The circles represent the results of KS, and the triangles represent the results of DK.

Fig. 10
Fig. 10

(a) Velocity threshold of the 1-deg band for SI expressed by temporal frequency as a function of spatial frequency for each contrast. The left plot shows the data in the relative motion condition, and the right plot shows the data in the uniform motion condition. This corresponds to the contrast sensitivity function in the spatiotemporal-frequency domain. (b) Model prediction of the velocity thresholds in (a). The open circles connected by dashed lines are from fitting without data at contrasts of 1% or lower. (c) Contrast response functions and spatial-frequency tuning functions estimated from the model in each condition.

Tables (1)

Tables Icon

Table 1 Model Parameters for the Least-Squares Fitting a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=Sf(cg(fx))h(v),
f(c)=Rmaxcn/(cn+c50n),
g(fx)=exp{-[log(fx)-log(fx0)]2/σ2/2},

Metrics