Abstract

Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the Lu–Sperling three-motion-systems theory [J. Opt. Soc. Am. A 18, 2331 (2001)], stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment [J. Opt. Soc. Am. A 19, 2142 (2002)], Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figure–ground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to “Is it third-order alone or third-order plus dedicated depth-motion processing?” Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm [Lu and Sperling, Vision Res. 35, 2697 (1995)] ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three-motion-systems theory.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]
  2. Z.-L. Lu, G. Sperling, “Three-systems theory of human visual motion perception: review and update,” J. Opt. Soc. Am. A 18, 2331–2370 (2001).
    [CrossRef]
  3. R. Patterson, “Stereoscopic (cyclopean) motion sensing,” Vision Res. 39, 3329–3345 (1999).
    [CrossRef]
  4. H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).
  5. R. Patterson, “Three-systems theory of human visual motion perception: review and update: comment,” J. Opt. Soc. Am. A 19, 2142–2143 (2002).
    [CrossRef]
  6. A. T. Smith, N. E. Scott-Samuel, “Stereoscopic and contrast-defined motion in human vision,” Proc. R. Soc. London Ser. B 265, 1573–1581 (1998).
    [CrossRef]
  7. H. Ito, “Two processes in stereoscopic apparent motion,” Vision Res. 39, 2739–2748 (1999).
    [CrossRef] [PubMed]
  8. J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
    [CrossRef] [PubMed]
  9. E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of apparent motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  10. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [CrossRef] [PubMed]
  11. Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Nature 377, 237–239 (1995).
    [CrossRef] [PubMed]
  12. E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
    [CrossRef] [PubMed]
  13. P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
    [CrossRef] [PubMed]
  14. Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
    [CrossRef] [PubMed]
  15. P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
    [CrossRef]
  16. Q. Zaidi, S. J. DeBonet, “Motion energy versus position tracking: spatial, temporal and chromatic parameters,” Vision Res. 40, 3613–3635 (2000).
    [CrossRef]
  17. P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
    [CrossRef] [PubMed]
  18. R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
    [CrossRef] [PubMed]
  19. S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
    [CrossRef] [PubMed]
  20. Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).
  21. W. A. Phillips, “On the distinction between sensory storage and short-term visual memory,” Percept. Psychophys. 16, 283–290 (1974).
    [CrossRef]
  22. E. H. Adelson, “Some new motion illusions, and some old ones, analysed in terms of their Fourier components,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 34, 144 (1982).
  23. M. A. Georgeson, T. M. Shackleton, “Monocular motion sensing, binocular motion perception,” Vision Res. 29, 1511–1523 (1989).
    [CrossRef] [PubMed]
  24. A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
    [CrossRef]
  25. P. Burt, B. Julesz, “A disparity gradient limit for binocular fusion,” Science 208, 615–617 (1980).
    [CrossRef] [PubMed]
  26. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961), pp. 303–317.
  27. S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
    [CrossRef] [PubMed]
  28. C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
    [CrossRef] [PubMed]
  29. T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
    [CrossRef] [PubMed]
  30. Z.-L. Lu, G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075–1088 (1999).
    [CrossRef] [PubMed]
  31. C. Chubb, G. Sperling, “Texture quilts: basic tools for studying motion-from-texture,” J. Math. Psychol. 35, 411–442 (1991).
    [CrossRef]
  32. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  33. R. P. O’Shea, R. Blake, “Depth without disparity in random-dot stereograms,” Percept. Psychophys. 42, 205–214 (1987).
    [CrossRef] [PubMed]
  34. C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

2002 (1)

2001 (3)

Z.-L. Lu, G. Sperling, “Three-systems theory of human visual motion perception: review and update,” J. Opt. Soc. Am. A 18, 2331–2370 (2001).
[CrossRef]

H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

2000 (1)

Q. Zaidi, S. J. DeBonet, “Motion energy versus position tracking: spatial, temporal and chromatic parameters,” Vision Res. 40, 3613–3635 (2000).
[CrossRef]

1999 (5)

Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
[CrossRef] [PubMed]

E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
[CrossRef] [PubMed]

R. Patterson, “Stereoscopic (cyclopean) motion sensing,” Vision Res. 39, 3329–3345 (1999).
[CrossRef]

H. Ito, “Two processes in stereoscopic apparent motion,” Vision Res. 39, 2739–2748 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075–1088 (1999).
[CrossRef] [PubMed]

1998 (2)

A. T. Smith, N. E. Scott-Samuel, “Stereoscopic and contrast-defined motion in human vision,” Proc. R. Soc. London Ser. B 265, 1573–1581 (1998).
[CrossRef]

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

1997 (3)

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).

1996 (1)

T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
[CrossRef] [PubMed]

1995 (2)

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

1991 (1)

C. Chubb, G. Sperling, “Texture quilts: basic tools for studying motion-from-texture,” J. Math. Psychol. 35, 411–442 (1991).
[CrossRef]

1989 (3)

M. A. Georgeson, T. M. Shackleton, “Monocular motion sensing, binocular motion perception,” Vision Res. 29, 1511–1523 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

R. P. O’Shea, R. Blake, “Depth without disparity in random-dot stereograms,” Percept. Psychophys. 42, 205–214 (1987).
[CrossRef] [PubMed]

1985 (2)

1984 (1)

1982 (1)

E. H. Adelson, “Some new motion illusions, and some old ones, analysed in terms of their Fourier components,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 34, 144 (1982).

1980 (1)

P. Burt, B. Julesz, “A disparity gradient limit for binocular fusion,” Science 208, 615–617 (1980).
[CrossRef] [PubMed]

1974 (1)

W. A. Phillips, “On the distinction between sensory storage and short-term visual memory,” Percept. Psychophys. 16, 283–290 (1974).
[CrossRef]

1970 (1)

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

Adelson, E. H.

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of apparent motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

E. H. Adelson, “Some new motion illusions, and some old ones, analysed in terms of their Fourier components,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 34, 144 (1982).

Anstis, S. M.

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

Arguin, M.

P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Beck, J.

Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).

Bergen, J. R.

Blake, R.

R. P. O’Shea, R. Blake, “Depth without disparity in random-dot stereograms,” Percept. Psychophys. 42, 205–214 (1987).
[CrossRef] [PubMed]

Blaser, E.

E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
[CrossRef] [PubMed]

Burt, P.

P. Burt, B. Julesz, “A disparity gradient limit for binocular fusion,” Science 208, 615–617 (1980).
[CrossRef] [PubMed]

Cavanagh, P.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Chubb, C.

T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Texture quilts: basic tools for studying motion-from-texture,” J. Math. Psychol. 35, 411–442 (1991).
[CrossRef]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

DeBonet, S. J.

Q. Zaidi, S. J. DeBonet, “Motion energy versus position tracking: spatial, temporal and chromatic parameters,” Vision Res. 40, 3613–3635 (2000).
[CrossRef]

Donnelly, M.

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Edwards, M.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

Eyle, T.

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Georgeson, M. A.

M. A. Georgeson, T. M. Shackleton, “Monocular motion sensing, binocular motion perception,” Vision Res. 29, 1511–1523 (1989).
[CrossRef] [PubMed]

Gobell, J. L.

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

Gorea, A.

T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
[CrossRef] [PubMed]

Henaff, M.-A.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Intriligator, J.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Ito, H.

H. Ito, “Two processes in stereoscopic apparent motion,” Vision Res. 39, 2739–2748 (1999).
[CrossRef] [PubMed]

Julesz, B.

P. Burt, B. Julesz, “A disparity gradient limit for binocular fusion,” Science 208, 615–617 (1980).
[CrossRef] [PubMed]

Kim, H.

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

Kim, H. J.

H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).

Landis, T.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Ledgeway, T.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

Lesmes, L. A.

Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
[CrossRef] [PubMed]

Lu, Z.-L.

H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).

Z.-L. Lu, G. Sperling, “Three-systems theory of human visual motion perception: review and update,” J. Opt. Soc. Am. A 18, 2331–2370 (2001).
[CrossRef]

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
[CrossRef] [PubMed]

E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075–1088 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Michel, F.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Nawrot, M.

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Nishida, S.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

O’Shea, R. P.

R. P. O’Shea, R. Blake, “Depth without disparity in random-dot stereograms,” Percept. Psychophys. 42, 205–214 (1987).
[CrossRef] [PubMed]

Papathomas, T. V.

T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
[CrossRef] [PubMed]

Patterson, R.

R. Patterson, “Three-systems theory of human visual motion perception: review and update: comment,” J. Opt. Soc. Am. A 19, 2142–2143 (2002).
[CrossRef]

R. Patterson, “Stereoscopic (cyclopean) motion sensing,” Vision Res. 39, 3329–3345 (1999).
[CrossRef]

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Phillips, W. A.

W. A. Phillips, “On the distinction between sensory storage and short-term visual memory,” Percept. Psychophys. 16, 283–290 (1974).
[CrossRef]

Phinney, R. E.

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Reichardt, W.

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961), pp. 303–317.

Scott-Samuel, N. E.

A. T. Smith, N. E. Scott-Samuel, “Stereoscopic and contrast-defined motion in human vision,” Proc. R. Soc. London Ser. B 265, 1573–1581 (1998).
[CrossRef]

Shackleton, T. M.

M. A. Georgeson, T. M. Shackleton, “Monocular motion sensing, binocular motion perception,” Vision Res. 29, 1511–1523 (1989).
[CrossRef] [PubMed]

Smith, A. T.

A. T. Smith, N. E. Scott-Samuel, “Stereoscopic and contrast-defined motion in human vision,” Proc. R. Soc. London Ser. B 265, 1573–1581 (1998).
[CrossRef]

A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
[CrossRef]

Sperling, G.

H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).

Z.-L. Lu, G. Sperling, “Three-systems theory of human visual motion perception: review and update,” J. Opt. Soc. Am. A 18, 2331–2370 (2001).
[CrossRef]

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
[CrossRef] [PubMed]

E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075–1088 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Texture quilts: basic tools for studying motion-from-texture,” J. Math. Psychol. 35, 411–442 (1991).
[CrossRef]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
[CrossRef] [PubMed]

Troscianki, T.

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Tseng, C. H.

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

van Santen, J. P. H.

von Gruenau, M.

P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Whiting, A.

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

Zaidi, Q.

Q. Zaidi, S. J. DeBonet, “Motion energy versus position tracking: spatial, temporal and chromatic parameters,” Vision Res. 40, 3613–3635 (2000).
[CrossRef]

Invest. Ophthalmol. Visual Sci. ARVO Suppl. (4)

H. J. Kim, Z.-L. Lu, G. Sperling, “Rivalry motion versus depth motion,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, 3947 (2001).

Z.-L. Lu, G. Sperling, J. Beck, “Selective adaptation of three motion systems,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 38, 237 (1997).

E. H. Adelson, “Some new motion illusions, and some old ones, analysed in terms of their Fourier components,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 34, 144 (1982).

C. H. Tseng, H. Kim, J. L. Gobell, Z.-L. Lu, G. Sperling, “Motion standstill in rapidly moving stereoptic depth displays,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S504 (2001).

J. Math. Psychol. (1)

C. Chubb, G. Sperling, “Texture quilts: basic tools for studying motion-from-texture,” J. Math. Psychol. 35, 411–442 (1991).
[CrossRef]

J. Opt. Soc. Am. A (7)

Nat. Neurosci. (1)

P. Cavanagh, M.-A. Henaff, F. Michel, T. Landis, T. Troscianki, J. Intriligator, “Complete sparing of high-contrast color input to motion perception in cortical color blindness,” Nat. Neurosci. 1, 242–247 (1998).
[CrossRef]

Nature (1)

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

Percept. Psychophys. (3)

W. A. Phillips, “On the distinction between sensory storage and short-term visual memory,” Percept. Psychophys. 16, 283–290 (1974).
[CrossRef]

R. P. O’Shea, R. Blake, “Depth without disparity in random-dot stereograms,” Percept. Psychophys. 42, 205–214 (1987).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075–1088 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

E. Blaser, G. Sperling, Z.-L. Lu, “Measuring the amplification of attention,” Proc. Natl. Acad. Sci. USA 96, 11681–11686 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, L. A. Lesmes, G. Sperling, “Perceptual motion standstill in rapidly moving chromatic displays,” Proc. Natl. Acad. Sci. USA 96, 15374–15379 (1999).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (1)

A. T. Smith, N. E. Scott-Samuel, “Stereoscopic and contrast-defined motion in human vision,” Proc. R. Soc. London Ser. B 265, 1573–1581 (1998).
[CrossRef]

Science (2)

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

P. Burt, B. Julesz, “A disparity gradient limit for binocular fusion,” Science 208, 615–617 (1980).
[CrossRef] [PubMed]

Vision Res. (10)

T. V. Papathomas, A. Gorea, C. Chubb, “Precise assessment of the mean effective luminance of texture patches: an approach based on reverse-phi motion,” Vision Res. 36, 3775–3784 (1996).
[CrossRef] [PubMed]

M. A. Georgeson, T. M. Shackleton, “Monocular motion sensing, binocular motion perception,” Vision Res. 29, 1511–1523 (1989).
[CrossRef] [PubMed]

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

H. Ito, “Two processes in stereoscopic apparent motion,” Vision Res. 39, 2739–2748 (1999).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

R. Patterson, “Stereoscopic (cyclopean) motion sensing,” Vision Res. 39, 3329–3345 (1999).
[CrossRef]

Q. Zaidi, S. J. DeBonet, “Motion energy versus position tracking: spatial, temporal and chromatic parameters,” Vision Res. 40, 3613–3635 (2000).
[CrossRef]

P. Cavanagh, M. Arguin, M. von Gruenau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

R. Patterson, M. Donnelly, R. E. Phinney, M. Nawrot, A. Whiting, T. Eyle, “Speed discrimination of stereoscopic (cyclopean) motion,” Vision Res. 37, 871–878 (1997).
[CrossRef] [PubMed]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

Other (1)

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York, 1961), pp. 303–317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of (a) the three-systems theory and (b) the dedicated-motion-processors theory of motion perception. In both theories, “Image” represents the visual input after it has been processed by light adaptation, spatial-frequency channels, and contrast gain control. ME represents a motion-energy detector (or, equivalently, a Reichardt detector); the subscripts indicate separate detectors.

Fig. 2
Fig. 2

Missing-fundamental stimuli and analysis. (a) Square wave (solid “curves”) and the fundamental sine wave (dotted–dashed curves). Five consecutive frames are indicated, with a -90 deg (leftward) translation between frames. The slanting arrow indicates the direction of apparent motion. (b) The missing fundamental stimulus (continuous curves) produced by subtracting the fundamental sine wave from the square wave. xx indicates locations that are marked as being foreground (closer in depth) in the salience map. The arrow indicates the direction of motion based on the space–time modulation of salience (the xx’s in consecutive frames). This is also the direction of motion of the third harmonic (not shown).

Fig. 3
Fig. 3

Simulation of the responses of a third-order motion system (or of a dedicated depth motion system) to a random-dot pattern that translates leftward. Stimulus frames are indicated by the 4×32 pixel arrays. Black indicates near depth in a stereo display, represented as 1 (figure) in the salience field. White indicates far depth, represented as 0 (ground). Normal indicates that consecutive frames are identical except for a translation. Reversed indicates that the black–white relations are reversed between the first and second frames. The size of the translation (in pixels) is indicated for each quadrant. The jagged curves indicate the output of two-point Reichardt detectors with a separation of the two input points of exactly dx pixels (indicated). Reichardt detector outputs are computed separately for each of the four pixel rows of the stimulus and added to produce a summed output. Up represents leftward-motion output; down indicates rightward-motion output for detectors located at the indicated horizontal location. For each stimulus translation [panels (a)–(d)] there is a Reichardt detector of size dx that correctly detects the leftward motion of the normal translation and that reports the opposite direction for the reversed-phi translation.

Fig. 4
Fig. 4

Vergence, cyclopean images, and rivalry images. L and R represent two halves of a random-dot stereogram that defines a central rectangle that appears to be nearer to the observer than the background, as shown schematically in the middle section. A, B, and C represent planes drawn, respectively, through the front, middle, and back of the stereoscopic image. The cyclopean images A, B, and C represent the sum of L and R inputs falling on corresponding retinal points (cyclopean images) when the observer fixates on planes A, B, and C, respectively. The rivalry images A, B, and C represent the absolute value of the difference between L and R images. To produce a pure stereoscopic depth display with no object cues in the cyclopean or rivalry images requires fixation to be perfectly in between the front and back planes (B).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ME(x, y)=S1(x+Δx, y)S2(x, y)-S2(x+Δx, y)S1(x, y),

Metrics