Abstract

Wave-front reconstruction with the use of the fast Fourier transform (FFT) and spatial filtering is shown to be computationally tractable and sufficiently accurate for use in large Shack–Hartmann-based adaptive optics systems (up to at least 10,000 actuators). This method is significantly faster than, and can have noise propagation comparable with that of, traditional vector–matrix-multiply reconstructors. The boundary problem that prevented the accurate reconstruction of phase in circular apertures by means of square-grid Fourier transforms (FTs) is identified and solved. The methods are adapted for use on the Fried geometry. Detailed performance analysis of mean squared error and noise propagation for FT methods is presented with the use of both theory and simulation.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Freischlad, C. L. Koliopoulos, “Wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 74–80 (1985).
  2. K. Freischlad, C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986).
    [CrossRef]
  3. K. Freischlad, “Wavefront integration from difference data,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. SPIE1755, 212–218 (1992).
  4. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977).
    [CrossRef]
  5. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
    [CrossRef]
  6. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  7. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983).
    [CrossRef]
  8. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).
  9. R. J. Noll, “Phase estimates from slope-type wave-front sensors,” J. Opt. Soc. Am. 68, 139–140 (1978).
    [CrossRef]
  10. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980).
    [CrossRef]
  11. E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).

1986 (1)

1983 (1)

1980 (1)

1978 (1)

1977 (2)

1976 (1)

Freischlad, K.

K. Freischlad, C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986).
[CrossRef]

K. Freischlad, C. L. Koliopoulos, “Wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 74–80 (1985).

K. Freischlad, “Wavefront integration from difference data,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. SPIE1755, 212–218 (1992).

Fried, D. L.

Gavel, D. T.

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).

Hardy, J.

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).

Herrmann, J.

Hudgin, R. H.

Johansson, E. M.

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).

Koliopoulos, C. L.

K. Freischlad, C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986).
[CrossRef]

K. Freischlad, C. L. Koliopoulos, “Wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 74–80 (1985).

Noll, R. J.

Wallner, E. P.

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (1)

Other (4)

K. Freischlad, “Wavefront integration from difference data,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. SPIE1755, 212–218 (1992).

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, New York, 1998).

K. Freischlad, C. L. Koliopoulos, “Wavefront reconstruction from noisy slope or difference data using the discrete Fourier transform,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 74–80 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics