Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations

Not Accessible

Your library or personal account may give you access

Abstract

The scattering of waves by multilayered periodic structures is formulated in three-dimensional space by using Fourier expansions for both the basic lattice and its associated reciprocal lattice. The fields in each layer are then expressed in terms of characteristic modes, and the complete solution is found rigorously by using a transmission-line representation to address the pertinent boundary-value problems. Such an approach can treat periodic arbitrary lattices containing arbitrarily shaped dielectric components, which may generally be absorbing and have biaxial properties along directions that are parallel or perpendicular to the layers. We illustrate the present approach by comparing our numerical results with data reported in the past for simple structures. In addition, we provide new results for more complex configurations, which include multiple periodic regions that contain absorbing uniaxial components with several possible canonic shapes and high dielectric constants.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Modal theory of diffraction by multilayered gratings containing dielectric and metallic components

Mingming Jiang, Theodor Tamir, and Shuzhang Zhang
J. Opt. Soc. Am. A 18(4) 807-820 (2001)

Two-dimensional scattering from a multilayered periodic structure of arbitrary shapes

Maurice Sesay and Mitsuhiro Yokota
Appl. Opt. 49(33) 6537-6545 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (106)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved