Abstract

Basic color categories are thought to share a common pattern across linguistic groups, yet the focal colors defining those categories can vary substantially within any single group. We asked whether focal colors can also differ systematically across different groups of individuals living in potentially different color environments, by measuring focal and unique hues for observers in India and the United States. Differences between groups were generally small relative to the within-group variations, consistent with a strong common basis for color naming across diverse contexts. However, for most hues the average settings differed significantly across subpopulations. These differences persisted across testing conditions and thus probably reflect longer-term contextual influences on color appearance judgments. They suggest that while color categories may be qualitatively similar, precisely how the hue spectrum is parsed may differ quantitatively across different populations of observers. Both the between-group and the within-group differences are inconsistent with the differences predicted by common peripheral sources of variation in color vision (e.g., in lens or macular pigment) and may reflect an influence of environmental or cultural differences in focal color choices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Ann. Rev. Psychol. 45, 451–485 (1994).
    [CrossRef]
  2. E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1964).
  3. R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds., (Academic, New York, 1975), pp. 117–166.
  4. J. D. Mollon, G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 381–392.
  5. B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, Calif., 1969).
  6. P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
  7. J. Gage, Colour and Culture: Practice and Meaning from Antiquity to Abstraction (Thames and Hudson, London, 1993).
  8. K. Jameson, R. G. D’Andrade, “It’s not really red, green, blue, yellow: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 295–319.
  9. J. A. Lucy, “The linguistics of ‘color’,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 320–346.
  10. J. Lyons, “Color in language,” in Colour Art and Science, T. Lamb, J. Bourriau, eds. (Cambridge U. Press, Cambridge, UK, 1995), pp. 194–224.
  11. B. A. C. Saunders, J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–228 (1997).
    [PubMed]
  12. J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
    [CrossRef] [PubMed]
  13. C. L. Hardin, L. Maffi, eds., Color Categories in Thought and Language (Cambridge U. Press, Cambridge, UK, 1997).
  14. S. E. Palmer, Vision Science: Photons to Phenomenology (MIT Press, Cambridge, Mass., 1999).
  15. F. Ratliff, “On the psychophysiological bases of universal color terms,” Proc. Am. Philos. Soc., 120, 311–330 (1976).
  16. K. Uchikawa, R. M. Boynton, “Categorical color percep- tion of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825–1833 (1987).
    [CrossRef]
  17. G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
    [CrossRef] [PubMed]
  18. B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef] [PubMed]
  19. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  20. M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
    [CrossRef]
  21. R. Cruz-Coke, Colour Blindness: An Evolutionary Approach (Thomas, Springfield, Ill., 1970).
  22. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  23. C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
    [CrossRef]
  24. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
    [CrossRef]
  25. A. M. Brown, D. T. Lindsey, “The color blue: a psychophysical explanation for a linguistic phenomenon,” J. Vision (to be published).
  26. J. M. Kraft, J. S. Werner, “Aging and the saturation of colors. 2. Scaling of color appearance,” J. Opt. Soc. Am. A 16, 231–235 (1999).
    [CrossRef]
  27. J. S. Werner, “Aging through the eyes of Monet,” in Color Vision Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (de Gruyter, Berlin, 1998), pp. 3–41.
  28. H.-C. Lee. “A computational model for opponent color encoding,” in Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science and Technology, Springfield, Va.1990), pp. 178–181.
  29. J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
    [CrossRef]
  30. J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977).
    [CrossRef] [PubMed]
  31. R. N. Shepard, “The perceptual organization of colors: an adaptation to regularities of the terrestrial world?” in The Adapted Mind, J. Barkow, L. Cosmides, J. Tooby, eds. (Oxford U. Press, Oxford, UK, 1992).
  32. R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).
  33. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
    [CrossRef]
  34. J. Endler, “The color of light in forests and its implications,” Ecol. Mon. 63, 1–27 (1993).
    [CrossRef]
  35. B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
    [CrossRef]
  36. D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
    [CrossRef]
  37. Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).
  38. M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
    [CrossRef]
  39. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  40. M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [CrossRef] [PubMed]
  41. S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

2001 (3)

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

2000 (2)

1999 (2)

J. M. Kraft, J. S. Werner, “Aging and the saturation of colors. 2. Scaling of color appearance,” J. Opt. Soc. Am. A 16, 231–235 (1999).
[CrossRef]

J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
[CrossRef] [PubMed]

1998 (2)

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
[CrossRef]

1997 (3)

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
[CrossRef]

B. A. C. Saunders, J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–228 (1997).
[PubMed]

1996 (1)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

1995 (1)

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

1994 (3)

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Ann. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

1993 (1)

J. Endler, “The color of light in forests and its implications,” Ecol. Mon. 63, 1–27 (1993).
[CrossRef]

1990 (1)

1988 (1)

1987 (1)

K. Uchikawa, R. M. Boynton, “Categorical color percep- tion of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825–1833 (1987).
[CrossRef]

1982 (1)

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

1979 (1)

1978 (1)

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).

1977 (1)

1976 (1)

F. Ratliff, “On the psychophysiological bases of universal color terms,” Proc. Am. Philos. Soc., 120, 311–330 (1976).

Abramov, I.

I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Ann. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Berlin, B.

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, Calif., 1969).

Boynton, R. M.

K. Uchikawa, R. M. Boynton, “Categorical color percep- tion of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825–1833 (1987).
[CrossRef]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

Brown, A. M.

A. M. Brown, D. T. Lindsey, “The color blue: a psychophysical explanation for a linguistic phenomenon,” J. Vision (to be published).

Brown, R. O.

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

Carroll, J.

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

Charles-Dominique, P.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

Chiao, C.-C.

Cronin, T. W.

Cruz-Coke, R.

R. Cruz-Coke, Colour Blindness: An Evolutionary Approach (Thomas, Springfield, Ill., 1970).

D’Andrade, R. G.

K. Jameson, R. G. D’Andrade, “It’s not really red, green, blue, yellow: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 295–319.

Davidoff, J.

J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
[CrossRef] [PubMed]

Davies, I.

J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
[CrossRef] [PubMed]

De Valois, K. K.

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds., (Academic, New York, 1975), pp. 117–166.

De Valois, R. L.

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds., (Academic, New York, 1975), pp. 117–166.

Endler, J.

J. Endler, “The color of light in forests and its implications,” Ecol. Mon. 63, 1–27 (1993).
[CrossRef]

Gage, J.

J. Gage, Colour and Culture: Practice and Meaning from Antiquity to Abstraction (Thames and Hudson, London, 1993).

Gordon, J.

I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Ann. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1964).

Hsia, T.

C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
[CrossRef]

Jameson, K.

K. Jameson, R. G. D’Andrade, “It’s not really red, green, blue, yellow: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 295–319.

Jordan, G.

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

J. D. Mollon, G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 381–392.

Julliot, B.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

Kay, P.

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, Calif., 1969).

Kraft, J. M.

Lee, H.-C.

H.-C. Lee. “A computational model for opponent color encoding,” in Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science and Technology, Springfield, Va.1990), pp. 178–181.

Lindsey, D. T.

A. M. Brown, D. T. Lindsey, “The color blue: a psychophysical explanation for a linguistic phenomenon,” J. Vision (to be published).

Lucy, J. A.

J. A. Lucy, “The linguistics of ‘color’,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 320–346.

Lyons, J.

J. Lyons, “Color in language,” in Colour Art and Science, T. Lamb, J. Bourriau, eds. (Cambridge U. Press, Cambridge, UK, 1995), pp. 194–224.

MacLeod, D. I. A.

Malkoc, G.

McDaniel, C. K.

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).

Miyahara, E.

Mollon, J. D.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

J. D. Mollon, G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 381–392.

Moore, C. C.

C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
[CrossRef]

Neitz, J.

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

Neitz, M.

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

Palmer, S. E.

S. E. Palmer, Vision Science: Photons to Phenomenology (MIT Press, Cambridge, Mass., 1999).

Pokorny, J.

Raker, V. E.

Ratliff, F.

F. Ratliff, “On the psychophysiological bases of universal color terms,” Proc. Am. Philos. Soc., 120, 311–330 (1976).

Regan, B. C.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

Roberson, D.

J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
[CrossRef] [PubMed]

Romney, A. K.

C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
[CrossRef]

Ruderman, D. L.

Saunders, B. A. C.

B. A. C. Saunders, J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–228 (1997).
[PubMed]

Schefrin, B.

Shepard, R. N.

R. N. Shepard, “The perceptual organization of colors: an adaptation to regularities of the terrestrial world?” in The Adapted Mind, J. Barkow, L. Cosmides, J. Tooby, eds. (Oxford U. Press, Oxford, UK, 1992).

Simmen, B.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

Smith, V. C.

Uchikawa, K.

K. Uchikawa, R. M. Boynton, “Categorical color percep- tion of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825–1833 (1987).
[CrossRef]

van Brakel, J.

B. A. C. Saunders, J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–228 (1997).
[PubMed]

Vienot, F.

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

Webster, M. A.

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

Werner, J. S.

J. M. Kraft, J. S. Werner, “Aging and the saturation of colors. 2. Scaling of color appearance,” J. Opt. Soc. Am. A 16, 231–235 (1999).
[CrossRef]

B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

J. S. Werner, “Aging through the eyes of Monet,” in Color Vision Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (de Gruyter, Berlin, 1998), pp. 3–41.

Williams, D. R.

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

Yamauchi, Y.

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

Yendrikhovskij, S. N.

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

Ann. Rev. Psychol. (2)

I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Ann. Rev. Psychol. 45, 451–485 (1994).
[CrossRef]

J. D. Mollon, “Color vision,” Ann. Rev. Psychol. 33, 41–85 (1982).
[CrossRef]

Behav. Brain Sci. (1)

B. A. C. Saunders, J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–228 (1997).
[PubMed]

Color Res. Appl. (1)

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

Ecol. Mon. (1)

J. Endler, “The color of light in forests and its implications,” Ecol. Mon. 63, 1–27 (1993).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

Y. Yamauchi, D. R. Williams, J. Carroll, J. Neitz, M. Neitz, “Chromatic adaptation can cause long-term shifts in color appearance that arise in binocular visual pathways,” Invest. Ophthalmol. Visual Sci. 41, S720 (2001).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

J. Imaging Sci. Technol. (1)

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (6)

Language (1)

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).

Nature (1)

J. Davidoff, I. Davies, D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999).
[CrossRef] [PubMed]

Network Comput. Neural Syst. (1)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

Proc. Am. Philos. Soc. (1)

F. Ratliff, “On the psychophysiological bases of universal color terms,” Proc. Am. Philos. Soc., 120, 311–330 (1976).

Proc. Natl. Acad. Sci. USA (1)

C. C. Moore, A. K. Romney, T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. USA 97, 5007–5010 (1997).
[CrossRef]

Vision Res. (5)

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

B. C. Regan, B. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 21, 3321–3327 (1998).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

K. Uchikawa, R. M. Boynton, “Categorical color percep- tion of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825–1833 (1987).
[CrossRef]

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

Other (15)

R. Cruz-Coke, Colour Blindness: An Evolutionary Approach (Thomas, Springfield, Ill., 1970).

C. L. Hardin, L. Maffi, eds., Color Categories in Thought and Language (Cambridge U. Press, Cambridge, UK, 1997).

S. E. Palmer, Vision Science: Photons to Phenomenology (MIT Press, Cambridge, Mass., 1999).

J. Gage, Colour and Culture: Practice and Meaning from Antiquity to Abstraction (Thames and Hudson, London, 1993).

K. Jameson, R. G. D’Andrade, “It’s not really red, green, blue, yellow: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 295–319.

J. A. Lucy, “The linguistics of ‘color’,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 320–346.

J. Lyons, “Color in language,” in Colour Art and Science, T. Lamb, J. Bourriau, eds. (Cambridge U. Press, Cambridge, UK, 1995), pp. 194–224.

E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1964).

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds., (Academic, New York, 1975), pp. 117–166.

J. D. Mollon, G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 381–392.

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, Calif., 1969).

A. M. Brown, D. T. Lindsey, “The color blue: a psychophysical explanation for a linguistic phenomenon,” J. Vision (to be published).

J. S. Werner, “Aging through the eyes of Monet,” in Color Vision Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (de Gruyter, Berlin, 1998), pp. 3–41.

H.-C. Lee. “A computational model for opponent color encoding,” in Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science and Technology, Springfield, Va.1990), pp. 178–181.

R. N. Shepard, “The perceptual organization of colors: an adaptation to regularities of the terrestrial world?” in The Adapted Mind, J. Barkow, L. Cosmides, J. Tooby, eds. (Oxford U. Press, Oxford, UK, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The Munsell palette. The array of chips varied in 8 levels of lightness and 40 hue steps. The number in each cell gives the chroma of the chip.

Fig. 2
Fig. 2

Chromaticity coordinates for the printed hue palettes, plotted in the scaled LvsM and SvsLM color plane [see Eq. (1)]. Palettes for individual hues were composed of 24 colors drawn from regions around the nominal unique hue.

Fig. 3
Fig. 3

Chromaticity coordinates of the illuminants measured during testing at ESO and UNR, plotted in CIE 1931 space. Solid symbols, measurements from UNR; open symbols, measurements from ESO. Circles, measurements of outdoor illuminants during individual tests; triangles, measurements of indoor illuminants.

Fig. 4
Fig. 4

Distributions of focal hues selected from the Munsell array for ESO and UNR students tested under incandescent lighting. Each table shows the number of observers who selected a particular chip as the best example of red, orange, yellow, green, blue, or purple. Shaded cells show the selections reported by Berlin and Kay5 for individual observers.

Fig. 5
Fig. 5

Distribution of focal hues, based on averaging Munsell selections across lightness levels. Histograms successively plot the distributions for red, orange, yellow, green, blue, or purple for each of the eight test groups and conditions. Values correspond to the position of the hue (1–40) in the palette shown in Fig. 1.

Fig. 6
Fig. 6

Distribution of unique hues selected from hue palettes. Each histogram plots the hue angle that was selected for unique yellow, blue, red, or green for each of the eight test groups and conditions. Hue angles correspond to the directions in the LvsM and SvsLM space shown in Fig. 2.

Fig. 7
Fig. 7

Distribution of unique hues for desaturated stimuli presented on the computer. Each histogram plots the hue angle that was selected for unique yellow, blue, red, or green for either the ESO students (upper row) or the UNR students (lower row). Hue angles correspond to the directions in the LvsM and SvsLM space shown in Fig. 2.

Fig. 8
Fig. 8

Mean hue settings for each of the eight tested groups and conditions based on the Munsell palette (Mun), the printed hue palette (Hue), or the computer test (Comp). ESO-in (solid squares, dashed line), ESO-out (solid-circles, dashed line), SM-in (small diamonds), RTN-out (open triangle), RM-mon (solid upward triangle), RM-win (solid downward triangle), UNR-in (open circles, dotted line), UNR-out (open squares, dotted line). Large, unconnected diamonds plot the mean unique hue angles estimated previously with the computer test by Webster et al.19 Numbers to the right in each panel indicate the dominant wavelength corresponding to different hue angles, or the complementary wavelength in the case of the “red” settings.

Fig. 9
Fig. 9

(a) Hue shifts predicted by an increase in macular or lens density compared with the mean differences between the unique hues for the ESO and the UNR subjects. Predictions are based on the Smith–Pokorny fundamentals adjusted for a lens or macular density increase of 0.36 at peak density (equivalent to 2 standard deviations for the density variations estimated by Webster and MacLeod).40 (b) Hue shifts predicted by a relative change in contrast sensitivity along the SvsLM and LvsM axes or to an intermediate axis of -20 and +70 deg, again compared with the mean differences between the ESO and the UNR subjects. Predictions are based on a relative difference of 1.5 between the adapted and the unadapted sensitivities. Both sets of predictions plot the change in color angles required to maintain a constant ratio of LvsM and SvsLM excitation relative to a standard observer.

Tables (1)

Tables Icon

Table 1 Color Terms Used During Testing

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LvsMcontrast=(rmb-0.6568)*2754,
SvsLMcontrast=(bmb-0.01825)*4099,

Metrics