Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Equivalence of cost generators for minimum cost flow phase unwrapping

Not Accessible

Your library or personal account may give you access

Abstract

Phase unwrapping represents a crucial step in processing phase data obtained with techniques such as synthetic aperture radar interferometry, speckle interferometry, and magnetic resonance imaging. The so-called branch-cut approaches form an important class of phase unwrapping algorithms. In 1996, Costantini proposed to transform the problem of correctly placing branch cuts into a minimum cost flow problem [Proceedings of the Fringe ‘96 Workshop (European Space Agency, Munich, 1996), pp. 261–272]. The critical point of this new approach is to generate cost functions that have to represent all the a priori knowledge necessary for phase unwrapping. Any function transforming a priori knowledge into a cost function is called a cost generator. Several types of algorithms ranging from heuristic approaches to generators based on probability-theory interpretations were suggested. A problem arising from the growing diversity of algorithms is to find a criterion for the equivalence of different cost generators. Two cost generators are equivalent if they produce cost functions with the same minimal flow for every residue configuration on every image with all possible a priori knowledge. Comparing the results of different cost generators on test scenes can show only their nonequivalence. We solve this problem by proving the following mathematical classification theorem: Two cost generators are equivalent if and only if one can be transformed into the other by multiplication by a fixed constant.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
A class of solution-invariant transformations of cost functions for minimum cost flow phase unwrapping

Michael Hubig, Steffen Suchandt, and Nico Adam
J. Opt. Soc. Am. A 21(10) 1975-1987 (2004)

Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms

Curtis W. Chen and Howard A. Zebker
J. Opt. Soc. Am. A 17(3) 401-414 (2000)

Minimum Lp-norm two-dimensional phase unwrapping

Dennis C. Ghiglia and Louis A. Romero
J. Opt. Soc. Am. A 13(10) 1999-2013 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved