Abstract

The chromatic content (saturation) of monochromatic stimuli (480, 505, 577, and 650 nm) was scaled as a function of field size at three different retinal locations by 58 observers ranging from 18 to 83 yr of age. The different retinal locations (6 deg nasal, 2.5 deg inferior and 6 deg temporal eccentricity) were chosen according to anatomical studies demonstrating different degrees of senescent losses of cones or ganglion cells. Nine field sizes were tested, ranging from 0.0096 to 0.96 deg in diameter. The subjects used a percentage scale to judge the saturation of the flashed stimulus presentations (2 s on, 5 s off). The data analysis demonstrated that older observers require larger field sizes than younger observers to perceive hue as well as larger field sizes to reach the same level of scaled saturation. The spatial dependency of color appearance for younger and older observers was not correlated with senescent losses in retinal cells reported for the different retinal locations. The data were modeled by using an impulse-response function (i.e., Naka–Rushton equation) so that perceptive fields could be compared to electrophysiological measures of receptive fields or dendritic fields of retinal and cortical cells.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Ferree, G. Rand, “Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory,” Psychol. Rev. 26, 16–41 (1919).
    [CrossRef]
  2. J. D. Moreland, “Peripheral colour vision,” in Visual Psychophysics, Vol. VII/4 of Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer, New York, 1972), pp. 517–536.
    [CrossRef]
  3. J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
    [CrossRef] [PubMed]
  4. J. A. van Esch, E. E. Koldenhof, A. J. van Doorn, J. J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984).
    [CrossRef] [PubMed]
  5. M. A. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
    [CrossRef] [PubMed]
  6. I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina,” J. Opt. Soc. Am. A 8, 404–414 (1991).
    [CrossRef] [PubMed]
  7. S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
    [CrossRef]
  8. I. Abramov, J. Gordon, “Color appearance in central and peripheral retina,” J. Opt. Soc. Am. A 4, P38 (1987).
  9. I. Abramov, J. Gordon, “Color appearance in peripheral retina: naso-temporal asymmetries,” Invest. Ophthalmol. Visual Sci. Suppl. 29, 300 (1988).
  10. A. L. Nagy, J. A. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral retina,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
    [CrossRef] [PubMed]
  11. V. J. Volbrecht, E. E. Shrago, B. E. Schefrin, J. S. Werner, “Spatial summation in human cone mechanisms from 0° to 20° in the superior retina,” J. Opt. Soc. Am. A 17, 641–650 (2000).
    [CrossRef]
  12. E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 211–223.
  13. R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), Vol. 5, pp. 117–166.
  14. J. Krüger, “Stimulus dependent colour specificity of monkey lateral geniculate neurons,” Exp. Brain Res. 30, 297–311 (1977).
  15. B. E. Schefrin, J. S. Werner, “Age-related changes in the color appearance of broadband surfaces,” Color Res. Appl. 18, 380–389 (1993).
    [CrossRef]
  16. J. M. Kraft, J. S. Werner, “Aging and the saturation of colors. 2. Scaling of color appearance,” J. Opt. Soc. Am. A 16, 231–235 (1999).
    [CrossRef]
  17. C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
    [CrossRef] [PubMed]
  18. C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).
  19. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  20. K. I. Naka, W. A. Rushton, “S-potentials from colour units in the retina of fish (Cyprinadae),” J. Physiol. 185, 587–599 (1966).
  21. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  22. U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1976).
    [CrossRef]
  23. A. L. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
    [CrossRef] [PubMed]
  24. B. E. Schefrin, J. S. Werner, “Loci of unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef] [PubMed]
  25. P. K. Kaiser, J. P. Comerford, D. M. Bodinger, “Saturation of spectral lights,” J. Opt. Soc. Am. 66, 818–826 (1976).
    [CrossRef]
  26. R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
    [PubMed]
  27. R. Desimone, S. J. Schein, “Visual properties of neurons in area V4 of macaque: sensitivity to stimulus form,” J. Neurophysiol. 57, 835–868 (1987).
    [PubMed]
  28. R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
    [CrossRef]
  29. D. M. Dacey, M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).
  30. D. M. Dacey, “Morphology of a small-bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
    [CrossRef]
  31. R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

1997 (1)

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

1993 (6)

D. M. Dacey, “Morphology of a small-bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

A. L. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

A. L. Nagy, J. A. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral retina,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef] [PubMed]

B. E. Schefrin, J. S. Werner, “Age-related changes in the color appearance of broadband surfaces,” Color Res. Appl. 18, 380–389 (1993).
[CrossRef]

1992 (1)

D. M. Dacey, M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

1991 (1)

1990 (1)

1989 (1)

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

1988 (2)

I. Abramov, J. Gordon, “Color appearance in peripheral retina: naso-temporal asymmetries,” Invest. Ophthalmol. Visual Sci. Suppl. 29, 300 (1988).

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

1987 (2)

R. Desimone, S. J. Schein, “Visual properties of neurons in area V4 of macaque: sensitivity to stimulus form,” J. Neurophysiol. 57, 835–868 (1987).
[PubMed]

I. Abramov, J. Gordon, “Color appearance in central and peripheral retina,” J. Opt. Soc. Am. A 4, P38 (1987).

1986 (2)

M. A. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

1984 (1)

1977 (2)

J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

J. Krüger, “Stimulus dependent colour specificity of monkey lateral geniculate neurons,” Exp. Brain Res. 30, 297–311 (1977).

1976 (2)

P. K. Kaiser, J. P. Comerford, D. M. Bodinger, “Saturation of spectral lights,” J. Opt. Soc. Am. 66, 818–826 (1976).
[CrossRef]

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1976).
[CrossRef]

1966 (2)

K. I. Naka, W. A. Rushton, “S-potentials from colour units in the retina of fish (Cyprinadae),” J. Physiol. 185, 587–599 (1966).

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1919 (1)

C. E. Ferree, G. Rand, “Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory,” Psychol. Rev. 26, 16–41 (1919).
[CrossRef]

Abramov, I.

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, “Color appearance in peripheral retina: naso-temporal asymmetries,” Invest. Ophthalmol. Visual Sci. Suppl. 29, 300 (1988).

I. Abramov, J. Gordon, “Color appearance in central and peripheral retina,” J. Opt. Soc. Am. A 4, P38 (1987).

J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Bodinger, D. M.

Buck, S. L.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Chan, H.

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Comerford, J. P.

Curcio, C. A.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

Dacey, D. M.

D. M. Dacey, “Morphology of a small-bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

D. M. Dacey, M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

De Valois, K. K.

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), Vol. 5, pp. 117–166.

De Valois, R. L.

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), Vol. 5, pp. 117–166.

Desimone, R.

R. Desimone, S. J. Schein, “Visual properties of neurons in area V4 of macaque: sensitivity to stimulus form,” J. Neurophysiol. 57, 835–868 (1987).
[PubMed]

DeValois, K. K.

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

DeValois, R. L.

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

Doyal, J. A.

Drucker, D. N.

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

Ferree, C. E.

C. E. Ferree, G. Rand, “Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory,” Psychol. Rev. 26, 16–41 (1919).
[CrossRef]

Fowler, G.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Gordon, J.

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, “Color appearance in peripheral retina: naso-temporal asymmetries,” Invest. Ophthalmol. Visual Sci. Suppl. 29, 300 (1988).

I. Abramov, J. Gordon, “Color appearance in central and peripheral retina,” J. Opt. Soc. Am. A 4, P38 (1987).

J. Gordon, I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

Gouras, P.

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 211–223.

Hamilton, S. L.

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

Hunt, B.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Johnson, M. A.

M. A. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

Kaiser, P. K.

Kalina, R. E.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Knight, R.

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Koenderink, J. J.

Koldenhof, E. E.

Kraft, J. M.

Krüger, J.

J. Krüger, “Stimulus dependent colour specificity of monkey lateral geniculate neurons,” Exp. Brain Res. 30, 297–311 (1977).

Mahon, L.

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

Millican, C. L.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Moreland, J. D.

J. D. Moreland, “Peripheral colour vision,” in Visual Psychophysics, Vol. VII/4 of Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer, New York, 1972), pp. 517–536.
[CrossRef]

Nagy, A. L.

Naka, K. I.

K. I. Naka, W. A. Rushton, “S-potentials from colour units in the retina of fish (Cyprinadae),” J. Physiol. 185, 587–599 (1966).

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Perry, V. H.

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Petersen, M. R.

D. M. Dacey, M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

Rand, G.

C. E. Ferree, G. Rand, “Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory,” Psychol. Rev. 26, 16–41 (1919).
[CrossRef]

Rushton, W. A.

K. I. Naka, W. A. Rushton, “S-potentials from colour units in the retina of fish (Cyprinadae),” J. Physiol. 185, 587–599 (1966).

Schefrin, B. E.

Schein, S. J.

R. Desimone, S. J. Schein, “Visual properties of neurons in area V4 of macaque: sensitivity to stimulus form,” J. Neurophysiol. 57, 835–868 (1987).
[PubMed]

Shapley, R.

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Shrago, E. E.

Silverman, M. S.

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

Stabell, B.

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1976).
[CrossRef]

Stabell, U.

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1976).
[CrossRef]

Switkes, E.

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

Tootell, R. B. H.

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

van Doorn, A. J.

van Esch, J. A.

Volbrecht, V. J.

Werner, J. S.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wolf, S.

A. L. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

Zrenner, E.

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 211–223.

Am. J. Optom. Physiol. Opt. (1)

M. A. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

Ann. Neurol. (1)

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

Color Res. Appl. (1)

B. E. Schefrin, J. S. Werner, “Age-related changes in the color appearance of broadband surfaces,” Color Res. Appl. 18, 380–389 (1993).
[CrossRef]

Exp. Brain Res. (1)

J. Krüger, “Stimulus dependent colour specificity of monkey lateral geniculate neurons,” Exp. Brain Res. 30, 297–311 (1977).

Invest. Ophthalmol. Visual Sci. (1)

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

I. Abramov, J. Gordon, “Color appearance in peripheral retina: naso-temporal asymmetries,” Invest. Ophthalmol. Visual Sci. Suppl. 29, 300 (1988).

J. Neurophysiol. (1)

R. Desimone, S. J. Schein, “Visual properties of neurons in area V4 of macaque: sensitivity to stimulus form,” J. Neurophysiol. 57, 835–868 (1987).
[PubMed]

J. Neurosci. (1)

R. B. H. Tootell, E. Switkes, M. S. Silverman, S. L. Hamilton, “Functional anatomy of macaque striate cortex. II. Retinotopic organization,” J. Neurosci. 8, 1531–1568 (1988).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (7)

J. Physiol. (1)

K. I. Naka, W. A. Rushton, “S-potentials from colour units in the retina of fish (Cyprinadae),” J. Physiol. 185, 587–599 (1966).

Proc. Natl. Acad. Sci. USA (1)

D. M. Dacey, M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

Psychol. Rev. (1)

C. E. Ferree, G. Rand, “Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory,” Psychol. Rev. 26, 16–41 (1919).
[CrossRef]

Trends Neurosci. (1)

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Vision Res. (6)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

U. Stabell, B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1976).
[CrossRef]

A. L. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

R. L. DeValois, K. K. DeValois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Visual Neurosci. (1)

D. M. Dacey, “Morphology of a small-bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

Other (3)

J. D. Moreland, “Peripheral colour vision,” in Visual Psychophysics, Vol. VII/4 of Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer, New York, 1972), pp. 517–536.
[CrossRef]

E. Zrenner, P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 211–223.

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), Vol. 5, pp. 117–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Saturation scaling data of a younger (19 yr, open circles) and an elderly (79 yr, solid circles) subject plotted as a function of field size for a 480-nm stimulus, presented at 2.5 deg inferior retina. Smooth curves show model fits with a Naka–Rushton function [Eq. (1)]. The parameters used to describe the data are also illustrated for the older subject.

Fig. 2
Fig. 2

Mean age at which hue was first detected (parameter h) plotted as a function of test stimulus size (deg) for a 505-nm test light presented at 6 deg temporal eccentricity. Error bars denote ±1 SD of those subjects for whom the corresponding stimulus size was the minimal field size to perceive hue. The solid line is based on a least-squares linear regression, which was statistically significant (r=0.96).

Fig. 3
Fig. 3

Intersection I, corresponding to the stimulus size at which the Naka–Rushton model fit starts to rise significantly from zero. This parameter shows a statistically significant change with age. The data are from the 505-nm test light presented at 6 deg temporal eccentricity. A linear regression fitted to the data points is shown by the solid line (r=0.4). This corresponds to an increase of ∼10% per decade.

Fig. 4
Fig. 4

Naka–Rushton equation parameter k, corresponding to the field size where 50% of the maximum saturation rm was reached, is plotted as a function of age. Symbols show the values for a 505-nm test light presented at 6 deg temporal eccentricity. The solid line is based on the least-squares linear regression, which was not statistically significant.

Fig. 5
Fig. 5

Maximum saturation value rm derived from the Naka–Rushton model plotted as a function of age. Data are based on a 505-nm test light presented at 6 deg temporal eccentricity. The slope of the least-squares linear regression equation was not statistically significant.

Fig. 6
Fig. 6

Data points correspond to the maximum slope of the Naka–Rushton modeling for a 505-nm test light presented at 6 deg temporal eccentricity. The solid line is based on a linear regression fit, which was not statistically significant.

Fig. 7
Fig. 7

Critical perceptive-field sizes, defined as 3k, are compared with monkey and human dendritic and receptive-field sizes as a function of retinal eccentricity. Solid lines refer to nonhuman primate studies as summarized by Abramov et al.6 with P (parvocellular), M (magnocellular), V1 (striate cortex), and V4 representing receptive field sizes at different levels of visual processing. Dotted lines show dendritic field sizes for human parasol, bistratified, and midget ganglion cells.29,30 Solid symbols show the perceptive-field sizes calculated by Abramov et al.6 Open symbols represent the perceptive-field sizes for the 6 deg temporal and nasal locations calculated in the present study.

Tables (1)

Tables Icon

Table 1 Parameters Used To Describe the Data Sets a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

rrm=diandian+kn,

Metrics