Abstract

Multifocal oscillatory potentials (m-OPs) are thought to reflect rod–cone interactions. We examined the effect of age on the topography of the m-OP responses out to an eccentricity of 30 deg. Fifty-eight normal subjects were studied, aged between 13.6 and 58.8 yr. The data show a linear decrease in amplitude and a linear increase in latency with age, which is significant for most potentials. The decrease is uniform over the retina. These results suggest that an age-related impairment is occurring at or before the inner retina.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Sutter, D. Tran, “The field topography of ERG components in man. I. The photopic luminance response,” Vision Res. 32, 433–446 (1992).
    [CrossRef] [PubMed]
  2. S. Wu, E. E. Sutter, “A topographic study of oscillatory potentials in man,” Visual Neurosci. 12, 1013–1025 (1995).
    [CrossRef]
  3. R. Stodtmeister, “The spectral sensitivity function of human ERG wavelets,” Ophthalmic Res. 5, 21–30 (1973).
    [CrossRef]
  4. L. Wachtmeister, “Luminosity functions of the oscillatory potentials of the human electroretinogram,” Acta Ophthalmol. 52, 353–366 (1974).
    [CrossRef]
  5. P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).
  6. N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
    [CrossRef]
  7. S. Rousseau, P. Lachapelle, “The electroretinogram recorded at the onset of dark adaptation: understanding the origin of the scotopic oscillatory potentials,” Doc. Ophthalmol. 99, 135–150 (1999).
    [CrossRef]
  8. R. G. Weleber, “The effect of age on human cone and rod Ganzfeld electroretinograms,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).
  9. D. A. Martin, J. R. Heckenlively, “The normal electroretinogram,” Doc. Ophthalmol. Proc. Ser. 31, 135–144 (1982).
  10. C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
    [CrossRef] [PubMed]
  11. D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography,” Arch. Ophthalmol. 110, 1571–1568 (1992).
    [PubMed]
  12. V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
    [PubMed]
  13. G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
  14. T. E. Ogden, “The oscillatory waves of the primate electroretinogram,” Vision Res. 13, 1059–1074 (1973).
    [PubMed]
  15. K. T. Brown, “The electroretinogram: its components and their origin,” Vision Res. 8, 633–677 (1968).
    [PubMed]
  16. H. Heynen, D. van Norren, “Origin of the electroretinogram in the intact macaque eye. II. Current source–density analysis,” Vision Res. 25, 709–715 (1985).
  17. L. Wachtmeister, J. E. Dowling, “The oscillatory potentials of the mudpuppy retina,” Invest. Ophthalmol. Visual Sci. 17, 1176–1188 (1978).
  18. J. Pokorny, V. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [PubMed]
  19. H. Gao, J. G. Hollyfield, “Aging of the human retina,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).
  20. C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).
  21. J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
    [CrossRef] [PubMed]
  22. A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).
  23. F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).
  24. P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
    [CrossRef] [PubMed]
  25. G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
    [CrossRef]
  26. C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).
  27. C. F. J. Grindle, J. Marshall, “Aging changes in Bruch’s membrane and their functional implications,” Trans. Ophthalmol. Soc. U.K. 98, 172–175 (1978).
  28. D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
    [CrossRef]
  29. A. C. Bird, “Bruch’s membrane changes with age,” Br. J. Ophthamol. 76, 166–168 (1992).
    [CrossRef]
  30. A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

2000 (1)

A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

1999 (2)

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

S. Rousseau, P. Lachapelle, “The electroretinogram recorded at the onset of dark adaptation: understanding the origin of the scotopic oscillatory potentials,” Doc. Ophthalmol. 99, 135–150 (1999).
[CrossRef]

1998 (1)

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

1995 (1)

S. Wu, E. E. Sutter, “A topographic study of oscillatory potentials in man,” Visual Neurosci. 12, 1013–1025 (1995).
[CrossRef]

1993 (1)

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

1992 (5)

H. Gao, J. G. Hollyfield, “Aging of the human retina,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

A. C. Bird, “Bruch’s membrane changes with age,” Br. J. Ophthamol. 76, 166–168 (1992).
[CrossRef]

E. E. Sutter, D. Tran, “The field topography of ERG components in man. I. The photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography,” Arch. Ophthalmol. 110, 1571–1568 (1992).
[PubMed]

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

1991 (2)

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

1990 (1)

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

1989 (1)

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

1988 (1)

J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
[CrossRef] [PubMed]

1987 (2)

J. Pokorny, V. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[PubMed]

N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
[CrossRef]

1986 (2)

P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

1985 (2)

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

H. Heynen, D. van Norren, “Origin of the electroretinogram in the intact macaque eye. II. Current source–density analysis,” Vision Res. 25, 709–715 (1985).

1982 (1)

D. A. Martin, J. R. Heckenlively, “The normal electroretinogram,” Doc. Ophthalmol. Proc. Ser. 31, 135–144 (1982).

1981 (1)

R. G. Weleber, “The effect of age on human cone and rod Ganzfeld electroretinograms,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

1978 (2)

L. Wachtmeister, J. E. Dowling, “The oscillatory potentials of the mudpuppy retina,” Invest. Ophthalmol. Visual Sci. 17, 1176–1188 (1978).

C. F. J. Grindle, J. Marshall, “Aging changes in Bruch’s membrane and their functional implications,” Trans. Ophthalmol. Soc. U.K. 98, 172–175 (1978).

1974 (1)

L. Wachtmeister, “Luminosity functions of the oscillatory potentials of the human electroretinogram,” Acta Ophthalmol. 52, 353–366 (1974).
[CrossRef]

1973 (2)

R. Stodtmeister, “The spectral sensitivity function of human ERG wavelets,” Ophthalmic Res. 5, 21–30 (1973).
[CrossRef]

T. E. Ogden, “The oscillatory waves of the primate electroretinogram,” Vision Res. 13, 1059–1074 (1973).
[PubMed]

1968 (1)

K. T. Brown, “The electroretinogram: its components and their origin,” Vision Res. 8, 633–677 (1968).
[PubMed]

Alexander, K. R.

N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
[CrossRef]

Allen, K. A.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

Anderson, J. L.

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography,” Arch. Ophthalmol. 110, 1571–1568 (1992).
[PubMed]

Barbour, H. L.

J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
[CrossRef] [PubMed]

Birch, D. G.

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography,” Arch. Ophthalmol. 110, 1571–1568 (1992).
[PubMed]

Bird, A.

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

Bird, A. C.

A. C. Bird, “Bruch’s membrane changes with age,” Br. J. Ophthamol. 76, 166–168 (1992).
[CrossRef]

Brown, K. T.

K. T. Brown, “The electroretinogram: its components and their origin,” Vision Res. 8, 633–677 (1968).
[PubMed]

Buck, P.

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

Butrr, D. C.

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

Cordle, E. P.

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

Curcio, C. A.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

Dorey, C. K.

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Dowling, J. E.

L. Wachtmeister, J. E. Dowling, “The oscillatory potentials of the mudpuppy retina,” Invest. Ophthalmol. Visual Sci. 17, 1176–1188 (1978).

Drasdo, N.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Ebenstein, D.

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Finley, C. D.

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

Fiorentini, A.

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

Fishman, G. A.

N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
[CrossRef]

Fishman, M.

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

Gao, H.

H. Gao, J. G. Hollyfield, “Aging of the human retina,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

Garsd, A.

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Grindle, C. F. J.

C. F. J. Grindle, J. Marshall, “Aging changes in Bruch’s membrane and their functional implications,” Trans. Ophthalmol. Soc. U.K. 98, 172–175 (1978).

Harding, G. F. A.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Harper, C.

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

Heckenlively, J. R.

D. A. Martin, J. R. Heckenlively, “The normal electroretinogram,” Doc. Ophthalmol. Proc. Ser. 31, 135–144 (1982).

Heynen, H.

H. Heynen, D. van Norren, “Origin of the electroretinogram in the intact macaque eye. II. Current source–density analysis,” Vision Res. 25, 709–715 (1985).

Hollyfield, J. G.

H. Gao, J. G. Hollyfield, “Aging of the human retina,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

Hutman, L. P.

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

Jackson, G. R.

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

Jones, R.

P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).

Kalina, R. E.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

Kean, E. L.

J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
[CrossRef] [PubMed]

Keunen, J. E. E.

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

Kilbride, P. E.

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

King-Smith, P. E.

P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).

Kliger, D. S.

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

Kurtenbach, A.

A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

Lachapelle, P.

S. Rousseau, P. Lachapelle, “The electroretinogram recorded at the onset of dark adaptation: understanding the origin of the scotopic oscillatory potentials,” Doc. Ophthalmol. 99, 135–150 (1999).
[CrossRef]

Langrova, H.

A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

Lewis, J. W.

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

Liem, A. T. A.

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

Loffing, D. H.

P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).

Lutze, M.

Marshal, J. D.

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

Marshall, J.

C. F. J. Grindle, J. Marshall, “Aging changes in Bruch’s membrane and their functional implications,” Trans. Ophthalmol. Soc. U.K. 98, 172–175 (1978).

Martin, D. A.

D. A. Martin, J. R. Heckenlively, “The normal electroretinogram,” Doc. Ophthalmol. Proc. Ser. 31, 135–144 (1982).

McGwin, G.

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

Millican, C. L.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

Morrone, C.

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

Ogden, T. E.

T. E. Ogden, “The oscillatory waves of the primate electroretinogram,” Vision Res. 13, 1059–1074 (1973).
[PubMed]

Owsley, C.

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

Parker, K. R.

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

Pauleikhoff, D.

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

Peachey, N. S.

N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
[CrossRef]

Plantner, J. J.

J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
[CrossRef] [PubMed]

Pokorny, J.

Porciatti, V.

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

Read, J. S.

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

Rousseau, S.

S. Rousseau, P. Lachapelle, “The electroretinogram recorded at the onset of dark adaptation: understanding the origin of the scotopic oscillatory potentials,” Doc. Ophthalmol. 99, 135–150 (1999).
[CrossRef]

Smith, V.

Stodtmeister, R.

R. Stodtmeister, “The spectral sensitivity function of human ERG wavelets,” Ophthalmic Res. 5, 21–30 (1973).
[CrossRef]

Sutter, E. E.

S. Wu, E. E. Sutter, “A topographic study of oscillatory potentials in man,” Visual Neurosci. 12, 1013–1025 (1995).
[CrossRef]

E. E. Sutter, D. Tran, “The field topography of ERG components in man. I. The photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

Tran, D.

E. E. Sutter, D. Tran, “The field topography of ERG components in man. I. The photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

van de Kraats, J.

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

van Kuijk, F. J. G. M.

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

van Norren, D.

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

H. Heynen, D. van Norren, “Origin of the electroretinogram in the intact macaque eye. II. Current source–density analysis,” Vision Res. 25, 709–715 (1985).

Wachtmeister, L.

L. Wachtmeister, J. E. Dowling, “The oscillatory potentials of the mudpuppy retina,” Invest. Ophthalmol. Visual Sci. 17, 1176–1188 (1978).

L. Wachtmeister, “Luminosity functions of the oscillatory potentials of the human electroretinogram,” Acta Ophthalmol. 52, 353–366 (1974).
[CrossRef]

Weiter, J. J.

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Weleber, R. G.

R. G. Weleber, “The effect of age on human cone and rod Ganzfeld electroretinograms,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

Williams, D. E.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Wright, C. E.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Wu, G.

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Wu, S.

S. Wu, E. E. Sutter, “A topographic study of oscillatory potentials in man,” Visual Neurosci. 12, 1013–1025 (1995).
[CrossRef]

Zrenner, E.

A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

Acta Ophthalmol. (1)

L. Wachtmeister, “Luminosity functions of the oscillatory potentials of the human electroretinogram,” Acta Ophthalmol. 52, 353–366 (1974).
[CrossRef]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography,” Arch. Ophthalmol. 110, 1571–1568 (1992).
[PubMed]

Br. J. Ophthamol. (1)

A. C. Bird, “Bruch’s membrane changes with age,” Br. J. Ophthamol. 76, 166–168 (1992).
[CrossRef]

Curr. Eye Res. (1)

J. J. Plantner, H. L. Barbour, E. L. Kean, “The rhodopsin content of the human eye,” Curr. Eye Res. 7, 1125–1129 (1988).
[CrossRef] [PubMed]

Doc. Ophthalmol. (2)

C. E. Wright, D. E. Williams, N. Drasdo, G. F. A. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

S. Rousseau, P. Lachapelle, “The electroretinogram recorded at the onset of dark adaptation: understanding the origin of the scotopic oscillatory potentials,” Doc. Ophthalmol. 99, 135–150 (1999).
[CrossRef]

Doc. Ophthalmol. Proc. Ser. (1)

D. A. Martin, J. R. Heckenlively, “The normal electroretinogram,” Doc. Ophthalmol. Proc. Ser. 31, 135–144 (1982).

Invest. Ophthalmol. Visual Sci. (9)

R. G. Weleber, “The effect of age on human cone and rod Ganzfeld electroretinograms,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

P. E. King-Smith, D. H. Loffing, R. Jones, “Rod and cone ERGs and their oscillatory potentials,” Invest. Ophthalmol. Visual Sci. 27, 270–273 (1986).

L. Wachtmeister, J. E. Dowling, “The oscillatory potentials of the mudpuppy retina,” Invest. Ophthalmol. Visual Sci. 17, 1176–1188 (1978).

H. Gao, J. G. Hollyfield, “Aging of the human retina,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3276–3296 (1993).

A. T. A. Liem, J. E. E. Keunen, D. van Norren, J. van de Kraats, “Rod densitometry in the aging human eye,” Invest. Ophthalmol. Visual Sci. 32, 2676–2682 (1991).

F. J. G. M. van Kuijk, J. W. Lewis, P. Buck, K. R. Parker, D. S. Kliger, “Spectrophotometric quantitation of rhodopsin in the human retina,” Invest. Ophthalmol. Visual Sci. 32, 1962–1967 (1991).

A. Kurtenbach, H. Langrova, E. Zrenner, “Multifocal oscillatory potentials in type 1 diabetics without retinopathy,” Invest. Ophthalmol. Visual Sci. 41, 3234–3241 (2000).

C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter, “Cell loss in the aging retina,” Invest. Ophthalmol. Visual Sci. 30, 1691–1699 (1989).

Ophtalmology (1)

D. Pauleikhoff, C. Harper, J. D. Marshal, A. Bird, “Aging changes in Bruch’s membrane. A histochemical and morphologic study,” Ophtalmology 97, 171–178 (1990).
[CrossRef]

Ophthalmic Res. (1)

R. Stodtmeister, “The spectral sensitivity function of human ERG wavelets,” Ophthalmic Res. 5, 21–30 (1973).
[CrossRef]

Trans. Ophthalmol. Soc. U.K. (1)

C. F. J. Grindle, J. Marshall, “Aging changes in Bruch’s membrane and their functional implications,” Trans. Ophthalmol. Soc. U.K. 98, 172–175 (1978).

Vision Res. (9)

P. E. Kilbride, L. P. Hutman, M. Fishman, J. S. Read, “Foveal cone pigment density difference in the aging human eye,” Vision Res. 26, 321–325 (1986).
[CrossRef] [PubMed]

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

N. S. Peachey, K. R. Alexander, G. A. Fishman, “Rod and cone system contributions to oscillatory potentials: an explanation for the conditioning flash,” Vision Res. 27, 859–866 (1987).
[CrossRef]

E. E. Sutter, D. Tran, “The field topography of ERG components in man. I. The photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

V. Porciatti, D. C. Butrr, C. Morrone, A. Fiorentini, “The effects of ageing on the pattern electroretinogram and visual evoked potential in humans,” Vision Res. 32, 1199–1209 (1992).
[PubMed]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).

T. E. Ogden, “The oscillatory waves of the primate electroretinogram,” Vision Res. 13, 1059–1074 (1973).
[PubMed]

K. T. Brown, “The electroretinogram: its components and their origin,” Vision Res. 8, 633–677 (1968).
[PubMed]

H. Heynen, D. van Norren, “Origin of the electroretinogram in the intact macaque eye. II. Current source–density analysis,” Vision Res. 25, 709–715 (1985).

Visual Neurosci. (1)

S. Wu, E. E. Sutter, “A topographic study of oscillatory potentials in man,” Visual Neurosci. 12, 1013–1025 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The stimulus used in this study consisted of 61 hexagons, sized according to eccentricity. For data analysis, hexagons were grouped into five retinal rings of increasing eccentricity. Ring 1, 0–2 deg; ring 2, 1.8–7.0 deg; ring 3, 5.0–13.0 deg; ring 4, 11–22 deg; ring 5; 17–30 deg.

Fig. 2
Fig. 2

Average first-order (upper panel) and second-order (lower panel) responses obtained from all subjects for five retinal rings of increasing eccentricity, shown by curves of different types (see inset).

Fig. 3
Fig. 3

Example recordings obtained from one female subject, aged 22 yr. The first-order analysis is on the left and the second order on the right. Oscillatory potentials from the fovea (uppermost recordings) can barely be discerned from noise, and the early peak at ∼18 ms in the first peak of the first kernel analysis is scarcely distinguishable.

Fig. 4
Fig. 4

First-order responses: average latencies (left) and amplitudes (right) of the first-order kernel from each age group as a function of eccentricity, see symbol definitions in inset. The curves have been fitted with logarithmic functions depicted by different types of curve for each age group (see inset). The average standard deviation (SD) of the data points in the upper-left (latency of peak 1) is 1.01±0.3, of those in the lower-left panel (latency of peak 2) 1.07±0.21, of those in the upper-right (amplitude of peak 1) 0.58±0.27, and of those in the lower-left (amplitude of peak 2) 1.00±0.22.

Fig. 5
Fig. 5

Second-order responses: average latencies (left) and amplitudes (right) of the second order kernel from each age group as a function of eccentricity. Symbols and curves are as for Fig. 4. The average SDs for the data points for the latencies are peak 1, 0.86±0.27; peak 2, 0.83±0.17; peak 3, 1.08±0.19. The average SDs for the amplitudes are peak 1, 0.40±0.15; peak 2, 0.45±0.21; peak 3, 0.74±0.22.

Fig. 6
Fig. 6

First-order responses: latencies (left) and amplitudes (right) of the first and second peaks (upper and lower panels, respectively) as a function of age. Open squares denote the average response from ring 2 (1.8–7 deg eccentricity); solid diamonds from ring 3 (5–13 deg); open circles from ring 4 (11–22 deg); and crosses from ring 5 (17–30 deg). Linear regression lines have been fitted to the data and are shown by different types of line for each ring (see inset).

Fig. 7
Fig. 7

Second-order responses: latencies and amplitudes of the three potentials as a function of age. Symbols and lines as for Fig. 6.  

Metrics