Abstract

Age-related changes in photopic retinal function were evaluated topographically with the multifocal electroretinogram (mfERG). Thirty-two subjects between the ages of 16 and 69 participated. There was a strong dependence on age for all mfERG response measures that was strongest for the group of central retinal responses (i.e., within 5 deg eccentricity) and approximately equal for responses between 5 and 20 deg. After adjustment for crystalline lens optical density and pupil diameter, significant effects of age were limited to central first-order (i.e., within 5 deg) and second-order response kernels. Simulation studies support an optical basis for the observed age-related changes. It is concluded that mfERG changes between the ages of 20 and 70 are due predominantly to preretinal optical factors.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Weale, The Senescence of Human Vision (Oxford U. Press, New York, 1992).
  2. C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
    [CrossRef] [PubMed]
  3. K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
    [CrossRef]
  4. K. E. Higgins, M. J. Jaffe, R. C. Caruso, F. M. deMonasterio, “Spatial contrast sensitivity: effects of age, test–retest, and psychophysical method,” J. Opt. Soc. Am. A 5, 2173–2180 (1988).
    [CrossRef] [PubMed]
  5. G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
    [CrossRef]
  6. G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).
  7. G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
    [CrossRef]
  8. M. A. Johnson, D. Choy, “On the definition of age-related norms for visual function testing,” Appl. Opt. 26, 1449–1454 (1987).
    [CrossRef] [PubMed]
  9. P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001).
    [CrossRef]
  10. C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).
  11. C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995).
    [CrossRef]
  12. G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
    [CrossRef]
  13. A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
    [PubMed]
  14. E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).
  15. A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
    [CrossRef] [PubMed]
  16. S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
    [PubMed]
  17. B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).
  18. R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
    [CrossRef]
  19. G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
    [CrossRef]
  20. G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
    [CrossRef]
  21. G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000).
    [CrossRef] [PubMed]
  22. P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
    [CrossRef] [PubMed]
  23. R. A. Weale, “Senescent vision: Is it all the fault of the lens?” Eye 1, 217–221 (1987).
    [CrossRef] [PubMed]
  24. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef] [PubMed]
  25. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  26. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988).
  27. P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).
  28. D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef]
  29. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1982).
  30. J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
    [CrossRef] [PubMed]
  31. T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995).
    [CrossRef] [PubMed]
  32. P. Artal, M. Ferro, I. Miranda, R. J. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
    [CrossRef] [PubMed]
  33. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  34. B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).
  35. C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).
  36. C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
    [CrossRef] [PubMed]
  37. C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).
  38. H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).
  39. J. Marshall, “The ageing retina: physiology or pathology,” Eye 1, 282–295 (1987).
    [CrossRef] [PubMed]
  40. J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).
  41. R. G. Weleber, “The effect of age on human cone and rod ganzfeld electroretingrams,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).
  42. D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992).
    [CrossRef] [PubMed]
  43. C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
    [CrossRef] [PubMed]
  44. G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
    [CrossRef] [PubMed]
  45. G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
    [CrossRef]
  46. G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
    [CrossRef] [PubMed]
  47. G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).
  48. K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).
  49. N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
    [CrossRef]
  50. A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).
  51. J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999).
    [CrossRef] [PubMed]
  52. X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
    [PubMed]
  53. X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995).
    [PubMed]
  54. R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).
  55. R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
    [CrossRef]
  56. P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
    [CrossRef]
  57. M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).
  58. D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993).
    [CrossRef] [PubMed]
  59. D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993).
    [CrossRef]
  60. A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996).
    [CrossRef] [PubMed]
  61. D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
    [CrossRef]
  62. C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000).
    [CrossRef] [PubMed]
  63. L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981).
    [CrossRef]
  64. L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
    [CrossRef] [PubMed]
  65. D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
    [CrossRef]
  66. D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
    [CrossRef]
  67. W. A. Hare, H. Ton, “Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey,” Doc. Ophthalmol. (to be published).
  68. R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
    [CrossRef]
  69. E. E. Sutter, “The fast m-transform: fast computation of cross-correlations with binary m-sequences,” SIAM J. Comput. 20, 686–694 (1991).
    [CrossRef]
  70. E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992).
    [CrossRef] [PubMed]
  71. M. A. Bearse, E. E. Sutter, “Imaging localized retinal dysfunction with the multifocal electroretinogram,” J. Opt. Soc. Am. A 13, 634–640 (1996).
    [CrossRef]
  72. E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999).
    [CrossRef] [PubMed]
  73. M. A. Bearse, E. E. Sutter, “Contrast dependence of multifocal ERG components,” Vision Science and Its Applications, Vol. 1 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 24–27.
  74. D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retinal Res. 19, 607–646 (2000).
    [CrossRef]
  75. D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
    [CrossRef]
  76. D. C. Hood, J. Li, “A technique for measuring individual multifocal ERG records.” In: D. Yager (ed.), in Noninvasive Assessment of the Visual System, Vol. 11 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 33–41.
  77. G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
    [CrossRef]
  78. M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.
  79. B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996).
    [CrossRef] [PubMed]
  80. G. L. Martinsen, “The multifocal electroretinogram in aging and age-related macular degeneration,” Ph.D. dissertation (University of California, Berkeley, Calif., 2000).

2001 (2)

P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001).
[CrossRef]

G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
[CrossRef]

2000 (5)

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retinal Res. 19, 607–646 (2000).
[CrossRef]

C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000).
[CrossRef] [PubMed]

G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000).
[CrossRef] [PubMed]

C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).

1999 (8)

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).

N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
[CrossRef]

J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999).
[CrossRef] [PubMed]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
[CrossRef]

E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999).
[CrossRef] [PubMed]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

1998 (1)

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

1997 (6)

A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
[CrossRef]

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
[CrossRef]

1996 (4)

A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996).
[CrossRef] [PubMed]

B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996).
[CrossRef] [PubMed]

R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

M. A. Bearse, E. E. Sutter, “Imaging localized retinal dysfunction with the multifocal electroretinogram,” J. Opt. Soc. Am. A 13, 634–640 (1996).
[CrossRef]

1995 (4)

T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995).
[CrossRef] [PubMed]

X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995).
[PubMed]

C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995).
[CrossRef]

R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
[CrossRef]

1994 (7)

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
[CrossRef]

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

1993 (8)

D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993).
[CrossRef] [PubMed]

D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993).
[CrossRef]

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
[CrossRef]

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).

P. Artal, M. Ferro, I. Miranda, R. J. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

1992 (4)

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992).
[CrossRef] [PubMed]

E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

1991 (1)

E. E. Sutter, “The fast m-transform: fast computation of cross-correlations with binary m-sequences,” SIAM J. Comput. 20, 686–694 (1991).
[CrossRef]

1990 (2)

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

1989 (1)

C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).

1988 (3)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988).

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

K. E. Higgins, M. J. Jaffe, R. C. Caruso, F. M. deMonasterio, “Spatial contrast sensitivity: effects of age, test–retest, and psychophysical method,” J. Opt. Soc. Am. A 5, 2173–2180 (1988).
[CrossRef] [PubMed]

1987 (6)

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

M. A. Johnson, D. Choy, “On the definition of age-related norms for visual function testing,” Appl. Opt. 26, 1449–1454 (1987).
[CrossRef] [PubMed]

A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
[CrossRef] [PubMed]

R. A. Weale, “Senescent vision: Is it all the fault of the lens?” Eye 1, 217–221 (1987).
[CrossRef] [PubMed]

J. Marshall, “The ageing retina: physiology or pathology,” Eye 1, 282–295 (1987).
[CrossRef] [PubMed]

G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
[CrossRef] [PubMed]

1986 (3)

G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
[CrossRef]

A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
[PubMed]

G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
[CrossRef] [PubMed]

1985 (2)

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

1983 (1)

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

1981 (2)

L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981).
[CrossRef]

R. G. Weleber, “The effect of age on human cone and rod ganzfeld electroretingrams,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

1974 (1)

D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

1967 (1)

S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
[PubMed]

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Adams, A. J.

C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).

M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.

Ahmed, J.

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

Allen, K. A.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Alvarado, J. A.

G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
[CrossRef]

Anderson, J. L.

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992).
[CrossRef] [PubMed]

Angstwurm, K.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Anzai, K.

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

Artal, P.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

P. Artal, M. Ferro, I. Miranda, R. J. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

Bandeen-Roche, K.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

Bearse, M. A.

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999).
[CrossRef] [PubMed]

A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).

M. A. Bearse, E. E. Sutter, “Imaging localized retinal dysfunction with the multifocal electroretinogram,” J. Opt. Soc. Am. A 13, 634–640 (1996).
[CrossRef]

M. A. Bearse, E. E. Sutter, “Contrast dependence of multifocal ERG components,” Vision Science and Its Applications, Vol. 1 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 24–27.

Berry, V.

S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
[PubMed]

Birch, D. G.

D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
[CrossRef]

D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993).
[CrossRef]

D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993).
[CrossRef] [PubMed]

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992).
[CrossRef] [PubMed]

Bisti, S.

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

Boynton, R. M.

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

Brabyn, J. A.

G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
[CrossRef]

Breton, M. E.

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

Brown, B.

B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996).
[CrossRef] [PubMed]

Burton, K. B.

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
[CrossRef]

Bush, R. A.

R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).

Caruso, R. C.

Casson, E. J.

E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).

Celesia, G. G.

G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
[CrossRef] [PubMed]

Choy, D.

Cideciyan, A. V.

A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996).
[CrossRef] [PubMed]

Cone, S.

G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
[CrossRef] [PubMed]

Cooper, D. G.

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

Cordle, E. P.

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

Curcio, C. A.

C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

de Jong, P. T.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

de Waard, P. W.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

deMonasterio, F. M.

Dong, C. J.

C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000).
[CrossRef] [PubMed]

Drance, S. M.

S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
[PubMed]

Drasdo, N.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Drucker, D. N.

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

Elliot, D. B.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Esterson, F. D.

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

Ferro, M.

Finley, C. D.

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

Fiorentini, A.

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981).
[CrossRef]

Flammer, J.

A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
[PubMed]

Fried, L. P.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

Frishman, L. J.

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999).
[CrossRef] [PubMed]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

Gallemore, R. P.

R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
[CrossRef]

Gao, H.

H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

Geraghty, E.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Gonzalez, C.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Greenstein, V.

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

Guirao, A.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Haas, A.

A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
[PubMed]

Haegerstrom-Portnoy, G.

G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).

G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
[CrossRef]

Harding, G. F.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Hare, W. A.

C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000).
[CrossRef] [PubMed]

W. A. Hare, H. Ton, “Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey,” Doc. Ophthalmol. (to be published).

Haywood, K. M.

G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
[CrossRef] [PubMed]

Heijl, A.

A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
[CrossRef] [PubMed]

Higgins, K. E.

Hollander, H.

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

Hollyfield, J. G.

H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

Holopigian, K.

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

Hood, D. C.

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retinal Res. 19, 607–646 (2000).
[CrossRef]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
[CrossRef]

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993).
[CrossRef] [PubMed]

D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993).
[CrossRef]

D. C. Hood, J. Li, “A technique for measuring individual multifocal ERG records.” In: D. Yager (ed.), in Noninvasive Assessment of the Visual System, Vol. 11 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 33–41.

Howard, D. L.

G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
[CrossRef]

Hughes, A.

S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
[PubMed]

Hughes, B. A.

R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
[CrossRef]

Huie, K.

M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.

Ijspeert, J. K.

T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

Jackson, G. R.

C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).

G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000).
[CrossRef] [PubMed]

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

Jacobs, R. J.

N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
[CrossRef]

Jacobson, S. G.

A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996).
[CrossRef] [PubMed]

Jaffe, G. J.

G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
[CrossRef]

Jaffe, M. J.

Johnson, C. A.

P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001).
[CrossRef]

G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
[CrossRef]

C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995).
[CrossRef]

E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).

C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).

Johnson, M. A.

Jonas, J. B.

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

Juster, R. P.

G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
[CrossRef]

Kalina, R. E.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Karwoski, C. J.

X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995).
[PubMed]

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

Kaufman, D.

G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
[CrossRef] [PubMed]

Kojetinsky, S.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Lachenmayr, B. J.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Lamb, T. D.

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

Lee, E. J.

M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.

Lewis, R. A.

C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).

Li, J.

D. C. Hood, J. Li, “A technique for measuring individual multifocal ERG records.” In: D. Yager (ed.), in Noninvasive Assessment of the Visual System, Vol. 11 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 33–41.

Lindgren, G.

A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
[CrossRef] [PubMed]

Lutze, M.

Maffei, L.

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981).
[CrossRef]

Marshall, D.

C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995).
[CrossRef]

Marshall, J.

J. Marshall, “The ageing retina: physiology or pathology,” Eye 1, 282–295 (1987).
[CrossRef] [PubMed]

Martinsen, G. L.

G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).

G. L. Martinsen, “The multifocal electroretinogram in aging and age-related macular degeneration,” Ph.D. dissertation (University of California, Berkeley, Calif., 2000).

McGwin, G.

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

Miller, S. S.

R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
[CrossRef]

Millican, C. L.

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

Miranda, I.

Mohidin, N.

N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
[CrossRef]

Mori, K.

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

Muller-Bergh, J. A.

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

Munoz, B.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

Murayama, K.

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
[CrossRef]

Naarendorp, F.

P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
[CrossRef]

Naumann, G. O.

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

Navarro, R. J.

Nelson-Quigg, J. M.

E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).

Nesher, R.

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

Norrby, S.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Olsson, J.

A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
[CrossRef] [PubMed]

Ostermaier, N.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Owsley, C.

G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000).
[CrossRef] [PubMed]

C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
[CrossRef]

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Palmowski, A. M.

A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).

Pepperberg, D. R.

D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
[CrossRef]

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Pokorny, J.

Prasada-Rao, P.

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

Pugh, E. N.

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

Redondo, M.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Robson, J. G.

J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999).
[CrossRef] [PubMed]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

Roche, K. B.

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

Rubin, G. S.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Sample, P. A.

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

Savage, G. L.

G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
[CrossRef]

Schaumberger, M.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Schein, O.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

Schlotzer-Schrehardt, U. M.

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

Schneck, M. E.

G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
[CrossRef]

M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.

Schneider, U.

A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
[PubMed]

Schueller, A. W.

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

Seiple, W.

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

Sekuler, R.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Shields, S. M.

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

Siemsen, D.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Sieving, P. A.

R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).

P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
[CrossRef]

Sloane, M. E.

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
[CrossRef]

Smith, V. C.

Spear, P. D.

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

Spry, P. G. D.

P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001).
[CrossRef]

Steinman, S. B.

R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1982).

Sutter, E. E.

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999).
[CrossRef] [PubMed]

A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).

M. A. Bearse, E. E. Sutter, “Imaging localized retinal dysfunction with the multifocal electroretinogram,” J. Opt. Soc. Am. A 13, 634–640 (1996).
[CrossRef]

E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

E. E. Sutter, “The fast m-transform: fast computation of cross-correlations with binary m-sequences,” SIAM J. Comput. 20, 686–694 (1991).
[CrossRef]

M. A. Bearse, E. E. Sutter, “Contrast dependence of multifocal ERG components,” Vision Science and Its Applications, Vol. 1 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 24–27.

Ton, H.

W. A. Hare, H. Ton, “Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey,” Doc. Ophthalmol. (to be published).

Tran, D.

E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

Trick, G. L.

R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
[CrossRef]

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
[CrossRef] [PubMed]

Trick, L. R.

G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
[CrossRef] [PubMed]

van den Berg, T. J.

T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

van Nooren, D.

D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Verdon, W. A.

G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).

Viswanathan, S.

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

Vivell, P. M.

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

Vos, J. J.

D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988).

R. A. Weale, “Senescent vision: Is it all the fault of the lens?” Eye 1, 217–221 (1987).
[CrossRef] [PubMed]

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, New York, 1992).

Weinreb, R. N.

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

Weleber, R. G.

R. G. Weleber, “The effect of age on human cone and rod ganzfeld electroretingrams,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

West, S. K.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Williams, D. E.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Winn, B.

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Wojciechowski, R.

R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
[CrossRef]

Wright, C. E.

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1982).

Xu, X.

X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995).
[PubMed]

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

Yap, M. K. H.

N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
[CrossRef]

B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996).
[CrossRef] [PubMed]

Yoneya, S.

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

Zeger, S.

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

Am. J. Ophthalmol. (2)

S. M. Drance, V. Berry, A. Hughes, “Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects,” Am. J. Ophthalmol. 63, 1667–1672 (1967).
[PubMed]

A. Haas, J. Flammer, U. Schneider, “Influence of age on the visual fields of normal subjects,” Am. J. Ophthalmol. 101, 199–203 (1986).
[PubMed]

Ann. Neurol. (1)

C. A. Curcio, D. N. Drucker, “Retinal ganglion cells in Alzheimer’s disease and aging,” Ann. Neurol. 33, 248–257 (1993).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (2)

A. Heijl, G. Lindgren, J. Olsson, “Normal variability of static perimetric threshold values across the central visual field,” Arch. Ophthalmol. 105, 1544–1549 (1987).
[CrossRef] [PubMed]

D. G. Birch, J. L. Anderson, “Standardized full-field electroretinography. Normal values and their variation with age,” Arch. Ophthalmol. 110, 1571–1576 (1992).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago) (1)

G. J. Jaffe, J. A. Alvarado, R. P. Juster, “Age-related changes of the normal visual field,” Arch. Ophthalmol. (Chicago) 104, 1021–1025 (1986).
[CrossRef]

Curr. Eye Res. (1)

G. L. Trick, L. R. Trick, K. M. Haywood, “Altered pattern evoked retinal and cortical potentials associated with human senescence,” Curr. Eye Res. 5, 717–724 (1986).
[CrossRef] [PubMed]

Doc. Ophthalmol. (2)

J. G. Robson, L. J. Frishman, “Dissecting the dark-adapted electroretinogram,” Doc. Ophthalmol. 95, 187–215 (1999).
[CrossRef] [PubMed]

C. E. Wright, D. E. Williams, N. Drasdo, G. F. Harding, “The influence of age on the electroretinogram and visual evoked potential,” Doc. Ophthalmol. 59, 365–384 (1985).
[CrossRef] [PubMed]

Electroencephalogr. Clin. Neurophysiol. (1)

G. G. Celesia, D. Kaufman, S. Cone, “Effects of age and sex on pattern electroretinograms and visual evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 68, 161–171 (1987).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

L. Maffei, A. Fiorentini, S. Bisti, H. Hollander, “Pattern ERG in the monkey after section of the optic nerve,” Exp. Brain Res. 59, 423–425 (1985).
[CrossRef] [PubMed]

Eye (2)

J. Marshall, “The ageing retina: physiology or pathology,” Eye 1, 282–295 (1987).
[CrossRef] [PubMed]

R. A. Weale, “Senescent vision: Is it all the fault of the lens?” Eye 1, 217–221 (1987).
[CrossRef] [PubMed]

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (14)

E. J. Casson, C. A. Johnson, J. M. Nelson-Quigg, “Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals,” Invest. Ophthalmol. Visual Sci. 34, 3096–3102 (1993).

P. A. Sample, F. D. Esterson, R. N. Weinreb, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Visual Sci. 29, 1306–1311 (1988).

C. A. Curcio, C. Owsley, G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Visual Sci. 41, 2015–2018 (2000).

H. Gao, J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Visual Sci. 33, 1–17 (1992).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

B. Winn, D. Whitaker, D. B. Elliot, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

C. A. Curcio, C. L. Millican, K. A. Allen, R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Visual Sci. 34, 3278–3296 (1993).

C. A. Johnson, A. J. Adams, R. A. Lewis, “Evidence for a neural basis of age-related visual field loss in normal observers,” Invest. Ophthalmol. Visual Sci. 30, 2056–2064 (1989).

B. J. Lachenmayr, S. Kojetinsky, N. Ostermaier, K. Angstwurm, P. M. Vivell, M. Schaumberger, “The different effects of aging on normal sensitivity in flicker and light-sense perimetry,” Invest. Ophthalmol. Visual Sci. 35, 2741–2748 (1994).

G. S. Rubin, S. K. West, B. Munoz, K. Bandeen-Roche, S. Zeger, O. Schein, L. P. Fried, “A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project,” Invest. Ophthalmol. Visual Sci. 38, 557–568 (1997).

J. B. Jonas, J. A. Muller-Bergh, U. M. Schlotzer-Schrehardt, G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Visual Sci. 31, 736–744 (1990).

R. G. Weleber, “The effect of age on human cone and rod ganzfeld electroretingrams,” Invest. Ophthalmol. Visual Sci. 20, 392–399 (1981).

R. A. Bush, P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Invest. Ophthalmol. Visual Sci. 35, 635–645 (1994).

M. E. Breton, A. W. Schueller, T. D. Lamb, E. N. Pugh, “Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction,” Invest. Ophthalmol. Visual Sci. 35, 295–309 (1994).

Invest. Ophthalmol. Visual Sci. Suppl. (3)

G. L. Martinsen, W. A. Verdon, G. Haegerstrom-Portnoy, “The multifocal ERG in age-related maculopathy,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S714 (1999).

K. Anzai, K. Mori, K. Murayama, S. Yoneya, “Normal values and their variation with age in multifocal electroretinograms,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S881 (1997).

A. M. Palmowski, M. A. Bearse, E. E. Sutter, “Variability and replicability of the ERG topography in normals,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S877 (1997).

J. Neurophysiol. (2)

X. Xu, C. J. Karwoski, “Current source density analysis of retinal field potentials II. Pharmacological analysis of the b-wave and m-wave,” J. Neurophysiol. 72, 96–105 (1994).
[PubMed]

X. Xu, C. J. Karwoski, “Current source density analysis of the electroretinographic d-wave of frog retina,” J. Neurophysiol. 73, 2459–2469 (1995).
[PubMed]

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (1)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988).

Ophthalmic Physiol. Opt. (2)

N. Mohidin, M. K. H. Yap, R. J. Jacobs, “Influence of age on multifocal electroretinography,” Ophthalmic Physiol. Opt. 19, 481–488 (1999).
[CrossRef]

B. Brown, M. K. H. Yap, “Contrast and luminance as parameters defining the output of the VERIS topographical ERG,” Ophthalmic Physiol. Opt. 16, 42–48 (1996).
[CrossRef] [PubMed]

Optom. Vision Sci. (7)

G. L. Trick, R. Nesher, D. G. Cooper, S. M. Shields , “The human pattern ERG: alteration of response properties with aging,” Optom. Vision Sci. 69, 122–128 (1992).
[CrossRef]

G. L. Savage, C. A. Johnson, D. L. Howard, “A comparison of non-invasive objective and subjective measurements of the optical density of human ocular media,” Optom. Vision Sci. 78, 386–395 (2001).
[CrossRef]

G. Haegerstrom-Portnoy, M. E. Schneck, J. A. Brabyn , “ Seeing into old age: vision function beyond acuity,” Optom. Vision Sci. 76, 141–158 (1999).
[CrossRef]

G. S. Rubin, K. B. Roche, P. Prasada-Rao, L. P. Fried, “Visual impairment and disability in older adults,” Optom. Vision Sci. 71, 750–760 (1994).
[CrossRef]

P. G. D. Spry, C. A. Johnson, “Senescent changes of the normal visual field: an age-old problem,” Optom. Vision Sci. 78, 436–441 (2001).
[CrossRef]

R. Wojciechowski, G. L. Trick, S. B. Steinman, “Topography of the age-related decline in motion sensitivity,” Optom. Vision Sci. 72, 67–74 (1995).
[CrossRef]

C. A. Johnson, D. Marshall, “Aging effects for opponent mechanisms in the central visual field,” Optom. Vision Sci. 72, 75–82 (1995).
[CrossRef]

Prog. Retinal Res. (2)

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retinal Res. 19, 607–646 (2000).
[CrossRef]

R. P. Gallemore, B. A. Hughes, S. S. Miller, “Retinal pigment epithelial transport mechanisms and their contribution to the electroretinogram,” Prog. Retinal Res. 16, 509–566 (1997).
[CrossRef]

Science (1)

L. Maffei, A. Fiorentini, “Electroretinographic responses to alternating gratings before and after section of the optic nerve,” Science 211, 953–955 (1981).
[CrossRef]

SIAM J. Comput. (1)

E. E. Sutter, “The fast m-transform: fast computation of cross-correlations with binary m-sequences,” SIAM J. Comput. 20, 686–694 (1991).
[CrossRef]

Vision Res. (15)

E. E. Sutter, D. Tran, “The field topography of ERG components in man—I: the photopic luminance response,” Vision Res. 32, 433–446 (1992).
[CrossRef] [PubMed]

E. E. Sutter, M. A. Bearse, “The optic nerve head component of the human ERG” Vision Res. 39, 419–436 (1999).
[CrossRef] [PubMed]

C. J. Dong, W. A. Hare, “Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina,” Vision Res. 40, 579–589 (2000).
[CrossRef] [PubMed]

A. V. Cideciyan, S. G. Jacobson, “An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age,” Vision Res. 36, 2609–2621 (1996).
[CrossRef] [PubMed]

D. C. Hood, M. A. Bearse, E. E. Sutter, S. Viswanathan, L. J. Frishman, “The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG),” Vision Res. 41, 2029–2041 (2000).
[CrossRef]

D. C. Hood, D. G. Birch, “Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity,” Vision Res. 33, 1605–1618 (1993).
[CrossRef] [PubMed]

G. R. Jackson, C. Owsley, E. P. Cordle, C. D. Finley, “Aging and scotopic sensitivity,” Vision Res. 38, 3655–3662 (1998).
[CrossRef]

G. R. Jackson, C. Owsley, G. McGwin, “Aging and dark adaptation,” Vision Res. 39, 3975–3982 (1999).
[CrossRef]

G. R. Jackson, C. Owsley, “Scotopic sensitivity during adulthood,” Vision Res. 40, 2467–2473 (2000).
[CrossRef] [PubMed]

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 10–20 (1993).
[CrossRef]

D. van Nooren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef] [PubMed]

T. J. van den Berg, J. K. Ijspeert, “Light scattering in donor lenses,” Vision Res. 35, 169–177 (1995).
[CrossRef] [PubMed]

Visual Neurosci. (4)

D. C. Hood, D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Visual Neurosci. 10, 857–871 (1993).
[CrossRef]

P. A. Sieving, K. Murayama, F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Visual Neurosci. 11, 519–532 (1994).
[CrossRef]

D. C. Hood, L. J. Frishman, S. Viswanathan, J. G. Robson, J. Ahmed, “Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque,” Visual Neurosci. 16, 411–416 (1999).
[CrossRef]

D. C. Hood, W. Seiple, K. Holopigian, V. Greenstein, “A comparison of the components of the multifocal and full-field ERGs,” Visual Neurosci. 14, 533–544 (1997).
[CrossRef]

Visual Neurossci. (1)

D. R. Pepperberg, D. G. Birch, D. C. Hood, “Photoresponses of human rods in vivo derived from pairedflash electroretinograms,” Visual Neurossci. 14, 73–82 (1997).
[CrossRef]

Other (7)

W. A. Hare, H. Ton, “Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey,” Doc. Ophthalmol. (to be published).

D. C. Hood, J. Li, “A technique for measuring individual multifocal ERG records.” In: D. Yager (ed.), in Noninvasive Assessment of the Visual System, Vol. 11 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 33–41.

M. E. Schneck, A. J. Adams, K. Huie, E. J. Lee, “A filter for simulating color and spatial vision of the elderly,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 357–364.

M. A. Bearse, E. E. Sutter, “Contrast dependence of multifocal ERG components,” Vision Science and Its Applications, Vol. 1 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 24–27.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, New York, 1982).

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, New York, 1992).

G. L. Martinsen, “The multifocal electroretinogram in aging and age-related macular degeneration,” Ph.D. dissertation (University of California, Berkeley, Calif., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Multifocal ERG stimulus geometry. (a) Numbers indicate eccentricity in degrees. Approximate position of the “blind spot” is shown by the gray shaded oval. Rings for group averages are shown: rings 2 and 4 are labeled, rings 1, 3, and 5 are hatched. (b) Normal mfERG response array. (c) Normal local first-order mfERG response with major features identified. (d) Normal local second-order kernel; note scale difference between (c) and (d).

Fig. 2
Fig. 2

Multifocal ERG amplitude versus age, first-order kernel (1k), scalar-product density. Solid lines represent best-fit linear regression of log amplitude versus age for each eccentricity group: central y=-0.01x+1.45, r2=0.57; middle y=-0.007x+0.9; r2=0.43; outer rings y=-0.007x+0.67, r2=0.42; p<0.0002 for each.

Fig. 3
Fig. 3

Multifocal ERG amplitude versus age, second-order kernel (2k), scalar-product density. Solid lines represent best-fit linear regression of log amplitude versus age for each eccentricity group: central y=-0.017x+1.17, r2=0.50; middle y=-0.01x+0.46, r2=0.56; outer rings y=-0.01x+0.21, r2=0.66; p<0.0001 for each.

Fig. 4
Fig. 4

Multifocal ERG amplitude versus age, first-order kernel, trough-to-peak (n1–p1) amplitude. The solid line represents the linear regression result for eccentricity group 1, y=-0.009x+2.67, r2=0.57; p<0.0001. For clarity, the dashed line represents regression results for both eccentricity groups 2 and 3, y=-0.007x+2.48, r2=0.44, p<0.0001, and y=-0.006x+2.45, r2=0.39, p<0.0004, respectively.

Fig. 5
Fig. 5

Multifocal ERG peak (p1) implicit time versus age, first-order kernel. The solid line represents the linear regression result for eccentricity group 1, y=0.066x+27.6, r2=0.30, p<0.003. For clarity, the dashed line represents regression results for both eccentricity groups 2 and 3, y=0.05x+27.0, r2=0.27, p<0.005, and y=0.05x+27.8, r2=0.30, p<0.003, respectively.

Fig. 6
Fig. 6

Multifocal ERG center-to-peripheral amplitude ratio versus age. (a) First-order kernel scalar-product amplitude (1k), solid circles with solid line, y=-0.02x+3.9, r2=0.23, p<0.01; second-order kernel scalar-product amplitude (2k), open squares with dashed line, y=-0.027x+4.2, r2=0.19, p<0.02. (b) First-order kernel trough-to-peak amplitude (n1–p1): open triangles, solid line, y=-0.013x+2.97, r2=0.17, p<0.04.

Fig. 7
Fig. 7

(a) Crystalline lens optical density versus age. Symbols represent the average value of the 410-, 430-, and 450-nm estimates for each subject. The solid line represents the function of lens density versus age from the study by Pokorny et al.25 (see text) averaged for their 410-, 430-, and 450-nm data. (b) Optical density versus wavelength. Symbols represent the average (±SEM) of all subjects in this study. Solid curves show the spectral functions from the study by Pokorny et al.25 for ages 20, 55, and 70.

Fig. 8
Fig. 8

Procedure used to calculate effect of age-related increase in lens optical density on mfERG stimulus intensity (retinal illuminance). The spectral output of the P104 phosphor used by the mfERG stimulus monitor (a) was multiplied by the relative photopic luminosity function (b) and then by the lens optical density function (c) specific to each subject’s age (taken from the study by Pokorny et al.25) to give the lens density factor for each subject.

Fig. 9
Fig. 9

Multifocal ERG intensity-response functions by retinal eccentricity group for (a) the first-order kernel (n1–p1) amplitude and (b) the second-order kernel (n1–p2) amplitude. Symbols represent average of six subjects (±SEM). The arrow denotes approximate intensity for undilated pupils used during the aging study. The solid lines are the best-fit linear regressions to the log amplitude data (1k slopes=0.54, 0.53, 0.61; 2k slopes=0.39, 0.51, 0.51, for groups 1, 2 and 3, respectively).

Fig. 10
Fig. 10

Adjusted multifocal ERG amplitude versus age, first-order kernel, trough-to-peak (n1–p1) amplitude. The solid line represents linear regression result for eccentricity group 1, y=-0.004x+2.59, r2=0.24, p<0.001. For clarity, the dashed line represents regression results for both eccentricity groups 2 and 3: y=-0.002x+2.40; r2=0.08, n.s., p=0.14; and y=-0.001x+2.36, r2=0.02, n.s., p=0.45, respectively.

Fig. 11
Fig. 11

Multifocal ERG (a) first-order kernel peak (p1) implicit time versus stimulus intensity. The arrow denotes approximate intensity for undilated pupils. Group 1, y=-4.77x+38.8; group 2, y=-4.37x+37.4; group 3, y=-3.80+35.8. (b) Adjusted first-order kernel peak (p1) implicit times versus age. The solid lines represent linear regression results for each eccentricity: group 1, y=0.03x+28.3, r2=0.06, n.s., p=0.2; group 2, y=0.01x+27.7, r2=0.02, n.s., p=0.43; group 3, y=0.02x+28.4, r2=0.06, n.s., p=0.23.

Fig. 12
Fig. 12

Adjusted first-order kernel (1k) scalar-product amplitude density versus age. The solid lines represent linear regression results for each eccentricity: group 1, y=-0.006x+1.36, r2=0.28, p<0.004; group 2, y=-0.003x+0.82,r2=0.10, n.s., p=0.11; group 3, y=-0.002x+0.57,r2=0.04, n.s., p=0.34.

Fig. 13
Fig. 13

Adjusted second-order kernel (2k) scalar-product amplitude density versus age. The solid lines represent linear regression results for each eccentricity: group 1, y=-0.015x+1.11, r2=0.39, p<0.0004; group 2, y=-0.006x+0.38,r2=0.30,p<0.003; group 3, y=-0.006x+0.14, r2=0.40,p<0.0004.

Fig. 14
Fig. 14

Multifocal ERG trough-to-peak amplitudes versus stimulus contrast for 1k responses (open symbols, n1–p1) and 2k responses (solid symbols, n1–p2) for the three eccentricity groups: group 1, diamonds; group 2, circles; group 3, triangles. For all data points, symbol size is larger than ±SEM.

Fig. 15
Fig. 15

Summary results for two simulation studies of age-related optical factors effects on mfERG amplitudes. BSF results (down-pointing triangles represent central mfERG averages, up-pointing represent peripheral averages). Simulation 2 results: decreased stimulus luminance and contrast. Circles, central mfERG averages; squares, peripheral averages; open symbols, presimulation averages; solid symbols, postsimulation averages. (a) Change in 1k scalar-product amplitude, (b) 2k amplitude change, (c) 1k trough-to-peak (n1–p1) amplitude change, (d) change of 1k peak implicit time (p1). The regression lines are taken from the following respective figures: (a) Fig. 2, (b) Fig. 3, (c) Fig. 4, (d) Fig. 5; note that the dashed line represents the average of the two peripheral regression lines in each case. The position of the BSF postfilter points along the abscissa (∼80 yr, indicated by F) was based on the performance characteristics on other psychophysical measures78 (see text).

Metrics