Abstract

We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann–Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).
  2. C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
    [Crossref] [PubMed]
  3. A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).
  4. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
    [Crossref] [PubMed]
  5. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
    [PubMed]
  6. R. Calver, M. J. Cox, D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
    [Crossref]
  7. J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).
  8. J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
    [Crossref]
  9. A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
    [Crossref]
  10. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  11. A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [Crossref] [PubMed]
  12. S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [Crossref]
  13. P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [Crossref]
  14. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision1, 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
    [Crossref]
  15. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  16. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
    [Crossref]
  17. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  18. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  19. P. M. Prieto, F. Vargas-Martı́n, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [Crossref]
  20. American National Standard for the Safe Use of Lasers ANSI Z136.1 (Laser Institute of America, Orlando, Fla., 1993).
  21. K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
    [Crossref] [PubMed]
  22. A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
    [Crossref] [PubMed]
  23. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).
  24. P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
    [Crossref]

2001 (1)

J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

2000 (3)

1999 (3)

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

R. Calver, M. J. Cox, D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[Crossref]

1998 (2)

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[Crossref] [PubMed]

P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]

1997 (1)

1995 (2)

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1991 (1)

A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
[Crossref] [PubMed]

1990 (1)

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

1983 (1)

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[Crossref] [PubMed]

1976 (1)

1973 (1)

1963 (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Applegate, R. A.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Artal, P.

Berny, F.

Bille, J. F.

Burns, S. A.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Calver, R.

Campbell, M. C. W.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[Crossref] [PubMed]

Charman, W. N.

A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
[Crossref] [PubMed]

Cox, M. J.

de Jong, P. T. V. M.

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

de Waard, P. W. T.

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

El Hage, S. G.

Elliot, D. B.

Ferro, M.

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[Crossref] [PubMed]

Geraghty, E.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Glasser, A.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[Crossref] [PubMed]

Goelz, S.

González, C.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Grimm, B.

Guirao, A.

Hayashi, F.

K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
[Crossref] [PubMed]

Hayashi, H.

K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
[Crossref] [PubMed]

Hayashi, K.

K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
[Crossref] [PubMed]

Howland, H. C.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Ijspeert, J. K.

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Liang, J.

Marcos, S.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

McLellan, J. S.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Miranda, I.

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[Crossref] [PubMed]

Morrell, A.

A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
[Crossref] [PubMed]

Navarro, R.

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[Crossref] [PubMed]

Noll, R. J.

Norrby, S.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Owsley, C.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[Crossref] [PubMed]

Prieto, P. M.

Redondo, M.

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[Crossref]

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Sekuler, R.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[Crossref] [PubMed]

Siemsen, D.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[Crossref] [PubMed]

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

van den Berg, T. J. T. P.

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

Vargas-Marti´n, F.

Weale, R. A.

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).

Whitefoot, H. D.

A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
[Crossref] [PubMed]

Williams, D. R.

Br. J. Physiol. Opt. (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Cornea (1)

K. Hayashi, H. Hayashi, F. Hayashi, “Topographic analysis of the changes in corneal shape due to aging,”Cornea 14, 527–532 (1995).
[Crossref] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

J. S. McLellan, S. Marcos, S. A. Burns, “Age-relatedchanged in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (7)

Ophthalmic Physiol. Opt. (1)

A. Morrell, H. D. Whitefoot, W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385–390 (1991).
[Crossref] [PubMed]

Opt. Eng. (1)

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[Crossref]

Opt. Lett. (1)

Vision Res. (3)

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[Crossref] [PubMed]

J. K. Ijspeert, P. W. T. de Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 36, 699–707 (1990).
[Crossref]

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[Crossref] [PubMed]

Other (4)

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision1, 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1.
[Crossref]

American National Standard for the Safe Use of Lasers ANSI Z136.1 (Laser Institute of America, Orlando, Fla., 1993).

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the rationale associated with the experiment.

Fig. 2
Fig. 2

Schematic diagram of the HS wave-front sensor (details are provided in the text).

Fig. 3
Fig. 3

RMS of the aberrations of the eye expressed in micrometers as a function of age (5.9 mm pupil diameter; defocus and astigmatism not included). The WA and the associated PSF for one young and one older subject are also shown as an illustrative example.

Fig. 4
Fig. 4

RMS of the aberrations of the eye (squares) and the cornea (circles) as a function of age (top panel) and for the internal surfaces (bottom panel). In both cases, 5.9 mm pupil diameter, with defocus and astigmatism removed.

Fig. 5
Fig. 5

Compensation factor defined by expression (5) as a function of age. Positive values denote compensation of corneal aberrations by the optics of the internal surfaces, zero represents no compensation, and negative values represent the situation in which the internal surfaces add aberrations to that of the cornea. The solid line is a linear fit to the data, and the dotted line marks the zero value of the compensation factor.

Fig. 6
Fig. 6

Two examples of wave aberrations (in a modulus π) representation for the anterior corneal surface, the internal surface, and the eye. Maps at the top are for a young subject and at the bottom for an older subject. (5.9 mm pupil diameter).

Fig. 7
Fig. 7

Averaged MTFs for the cornea, internal surfaces, and the eye (5.9 mm pupil diameter and 555-nm light). Solid curve, younger subjects (25–45 years); dashed curve, older subjects (45–70 years).

Fig. 8
Fig. 8

(a) Astigmatism (in micrometers) for the anterior corneal surface (circles) and the eye (squares) as a function of age. (b) Polar diagram of the axis of astigmatism of the cornea (circles) and the internal surfaces (triangles) as a function of age (an unconventional notation for axis angles were used for the sake of clarity in the figure).

Fig. 9
Fig. 9

(a) RMS of the third order (coma-like) terms for the cornea (circles) and the eye (squares) as a function of age. (b) RMS of the fourth order (spherical-like) terms for the cornea (circles) and the eye (squares) as a function of age (5.9 mm pupil diameter).

Fig. 10
Fig. 10

Values of Zernikes terms up to fourth order for the aberrations of the cornea versus the internal surfaces, for all young (triangles) and older (circles) subjects. (Measured in micrometers; 5.9 mm pupil diameter).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z(ρ, θ)=i=1NaiZi(ρ, θ),
W(ρ, θ)=i=1NAiZi(ρ, θ),
P(x, y)=p(x, y)exp[i(2π/λ)W(x, y)],
OTF(x, y)=P(x, y)P*(x-x, y-y)dxdy.
cf=1-[RMS(eye)/RMS(corneal)].

Metrics