Abstract

Motion-defined motion can play a special role in the discussion of whether one or two separate systems are required to process first- and second-order information because, in contrast to other second-order stimuli, such as contrast-modulated contours, motion detection cannot be explained by a simple input nonlinearity but requires preprocessing by motion detectors. Furthermore, the perceptual quality that defines an object (motion on the object surface) is identical to that which is attributed to the object as an emergent feature (motion of the object), raising the question of how these two object properties are linked. The interaction of first- and second-order information in such stimuli has been analyzed previously in a direction-discrimination task, revealing some cooperativity. Because any comprehensive integration of these two types of motion information should be reflected in the most fundamental property of a moving object, i.e., the direction in which it moves, we now investigate how motion direction is estimated in motion-defined objects. Observers had to report the direction of moving objects that were defined by luminance contrast or in random-dot kinematograms by differences in the spatiotemporal properties between the object region and the random-noise background. When the dots were moving coherently with the object (Fourier motion), direction sensitivity resembled that for luminance-defined objects, but performance deteriorated when the dots in the object region were static (drift-balanced motion). When the dots on the object surface were moving diagonally relative to the object direction (theta motion), the general level of accuracy declined further, and the perceived direction was intermediate between the veridical object motion direction and the direction of dot motion, indicating that the first- and second-order velocity vectors are somehow pooled. The inability to separate first- and second-order directional information suggests that the two corresponding subsystems of motion processing are not producing independent percepts and provides clues for possible implementations of the two-layer motion-processing network.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Zanker, J. Zeil, Motion Vision: Computational, Neural and Ecological Constraints (Springer, Berlin, 2001).
  2. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef] [PubMed]
  3. G. Sperling, “Three stages and two systems of visual processing,” Spatial Vision 4, 183–207 (1989).
    [CrossRef] [PubMed]
  4. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [CrossRef] [PubMed]
  5. T. Poggio, W. Reichardt, “On the representation of multi-input systems: computational properties of polynomial algorithms,” Biol. Cybern. 37, 167–186 (1980).
    [CrossRef]
  6. J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), pp. 156–165.
  7. Z.-L. Lu, G. Sperling, “Attention-generation apparent motion,” Nature 377, 237–239 (1995).
    [CrossRef] [PubMed]
  8. G. Sperling, Z.-L. Lu, “A systems analysis of visual motion perception,” in High-Level Motion Processing, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 153–183.
  9. A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
    [CrossRef]
  10. J. M. Zanker, “Theta motion: a new psychophysical paradigm indicating two levels of visual motion perception,” Naturwissenschaften 77, 243–246 (1990).
    [CrossRef] [PubMed]
  11. J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Proc. R. Soc. London Ser. B 351, 1725–1736 (1996).
    [CrossRef]
  12. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
    [CrossRef] [PubMed]
  13. D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
    [CrossRef]
  14. D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
    [CrossRef] [PubMed]
  15. D. R. Patzwahl, J. M. Zanker, “Mechanisms for human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling,” Eur. J. Neurosci. 12, 273–282 (2000).
    [CrossRef] [PubMed]
  16. O. J. Braddick, “Motion may be seen but not used,” Curr. Biol. 2, 587–589 (1992).
    [CrossRef]
  17. D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
    [CrossRef] [PubMed]
  18. D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
    [CrossRef] [PubMed]
  19. A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
    [CrossRef] [PubMed]
  20. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
    [CrossRef]
  21. Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
    [CrossRef] [PubMed]
  22. J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
    [CrossRef] [PubMed]
  23. A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?,” Vision Res. 37, 45–62 (1997).
    [CrossRef] [PubMed]
  24. N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
    [CrossRef] [PubMed]
  25. O. J. Braddick, “Moving on the surface,” Curr. Biol. 4, 534–536 (1994).
    [CrossRef] [PubMed]
  26. J. M. Zanker, I. S. Hüpgens, “Interaction between primary and secondary mechanisms in human motion perception,” Vision Res. 34, 1255–1266 (1994).
    [CrossRef] [PubMed]
  27. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
    [CrossRef] [PubMed]
  28. A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
    [CrossRef] [PubMed]
  29. C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
    [CrossRef] [PubMed]
  30. B. L. Gros, R. Blake, E. Hiris, “Anisotropies in visual motion perception: a fresh look,” J. Opt. Soc. Am. A 15, 2003–2011 (1998).
    [CrossRef]
  31. E. G. J. Pitman, “A note on normal correlation,” Biometrika 31, 9–12 (1939).
    [CrossRef]
  32. J. M. Zanker, “Perceptual learning in primary and secondary motion vision,” Vision Res. 39, 1293–1304 (1999).
    [CrossRef] [PubMed]
  33. B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
    [CrossRef] [PubMed]
  34. P. E. Hallett, “Eye movements,” in Handbook of Perception and Human Performance I. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 10-1–10-112.
  35. L. R. Harris, A. T. Smith, “Interactions between first- and second-order motion revealed by optokinetic nystagmus,” Exp. Brain Res. 130, 67–72 (2000).
    [CrossRef] [PubMed]
  36. A. Lindner, U. J. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
    [CrossRef] [PubMed]
  37. R. L. DeValois, K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vision Res. 31, 1619–1626 (1991).
    [CrossRef]
  38. T. Banton, D. M. Levi, “Spatial localization of motion-defined and luminance-defined contours,” Vision Res. 33, 2225–2237 (1993).
    [CrossRef] [PubMed]
  39. A. Hayes, “Apparent position governs contour-element binding by the visual system,” Proc. R. Soc. London B 267, 1341–1345 (2000).
    [CrossRef]
  40. S. Nishida, A. Johnston, “Influence of motion signals on the perceived position of spatial pattern,” Nature 397, 610–612 (1999).
    [CrossRef] [PubMed]
  41. W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
    [CrossRef] [PubMed]
  42. S. J. Anderson, D. C. Burr, “Spatial summation properties of directionally selective mechanisms in human vision,” J. Opt. Soc. Am. A 8, 1330–1339 (1991).
    [CrossRef] [PubMed]

2000 (4)

D. R. Patzwahl, J. M. Zanker, “Mechanisms for human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling,” Eur. J. Neurosci. 12, 273–282 (2000).
[CrossRef] [PubMed]

L. R. Harris, A. T. Smith, “Interactions between first- and second-order motion revealed by optokinetic nystagmus,” Exp. Brain Res. 130, 67–72 (2000).
[CrossRef] [PubMed]

A. Lindner, U. J. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

A. Hayes, “Apparent position governs contour-element binding by the visual system,” Proc. R. Soc. London B 267, 1341–1345 (2000).
[CrossRef]

1999 (3)

S. Nishida, A. Johnston, “Influence of motion signals on the perceived position of spatial pattern,” Nature 397, 610–612 (1999).
[CrossRef] [PubMed]

J. M. Zanker, “Perceptual learning in primary and secondary motion vision,” Vision Res. 39, 1293–1304 (1999).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

1998 (2)

B. L. Gros, R. Blake, E. Hiris, “Anisotropies in visual motion perception: a fresh look,” J. Opt. Soc. Am. A 15, 2003–2011 (1998).
[CrossRef]

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

1997 (1)

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?,” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

1996 (2)

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Proc. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

1995 (1)

Z.-L. Lu, G. Sperling, “Attention-generation apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

1994 (3)

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
[CrossRef]

O. J. Braddick, “Moving on the surface,” Curr. Biol. 4, 534–536 (1994).
[CrossRef] [PubMed]

J. M. Zanker, I. S. Hüpgens, “Interaction between primary and secondary mechanisms in human motion perception,” Vision Res. 34, 1255–1266 (1994).
[CrossRef] [PubMed]

1993 (5)

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

T. Banton, D. M. Levi, “Spatial localization of motion-defined and luminance-defined contours,” Vision Res. 33, 2225–2237 (1993).
[CrossRef] [PubMed]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

1992 (3)

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

O. J. Braddick, “Motion may be seen but not used,” Curr. Biol. 2, 587–589 (1992).
[CrossRef]

1991 (2)

1990 (1)

J. M. Zanker, “Theta motion: a new psychophysical paradigm indicating two levels of visual motion perception,” Naturwissenschaften 77, 243–246 (1990).
[CrossRef] [PubMed]

1989 (3)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vision 4, 183–207 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
[CrossRef] [PubMed]

1985 (1)

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

1984 (1)

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

1980 (1)

T. Poggio, W. Reichardt, “On the representation of multi-input systems: computational properties of polynomial algorithms,” Biol. Cybern. 37, 167–186 (1980).
[CrossRef]

1975 (1)

B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
[CrossRef] [PubMed]

1974 (1)

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

1939 (1)

E. G. J. Pitman, “A note on normal correlation,” Biometrika 31, 9–12 (1939).
[CrossRef]

Altenmüller, E.

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
[CrossRef]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
[CrossRef] [PubMed]

Anderson, S. J.

Badcock, D. R.

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

Baker, C. L.

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

Banton, T.

T. Banton, D. M. Levi, “Spatial localization of motion-defined and luminance-defined contours,” Vision Res. 33, 2225–2237 (1993).
[CrossRef] [PubMed]

Blake, R.

Boulton, J. C.

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

Braddick, O. J.

O. J. Braddick, “Moving on the surface,” Curr. Biol. 4, 534–536 (1994).
[CrossRef] [PubMed]

O. J. Braddick, “Motion may be seen but not used,” Curr. Biol. 2, 587–589 (1992).
[CrossRef]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

Braun, D.

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

Burr, D. C.

Buxton, H.

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Cavanagh, P.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Chubb, C.

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

DeValois, K. K.

R. L. DeValois, K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vision Res. 31, 1619–1626 (1991).
[CrossRef]

DeValois, R. L.

R. L. DeValois, K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vision Res. 31, 1619–1626 (1991).
[CrossRef]

Elbert, T.

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

Fahle, M.

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Georgeson, M. A.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Gros, B. L.

Hallett, P. E.

P. E. Hallett, “Eye movements,” in Handbook of Perception and Human Performance I. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 10-1–10-112.

Harris, L. R.

L. R. Harris, A. T. Smith, “Interactions between first- and second-order motion revealed by optokinetic nystagmus,” Exp. Brain Res. 130, 67–72 (2000).
[CrossRef] [PubMed]

Hayes, A.

A. Hayes, “Apparent position governs contour-element binding by the visual system,” Proc. R. Soc. London B 267, 1341–1345 (2000).
[CrossRef]

Hiris, E.

Hüpgens, I. S.

J. M. Zanker, I. S. Hüpgens, “Interaction between primary and secondary mechanisms in human motion perception,” Vision Res. 34, 1255–1266 (1994).
[CrossRef] [PubMed]

Ilg, U. J.

A. Lindner, U. J. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Johnston, A.

S. Nishida, A. Johnston, “Influence of motion signals on the perceived position of spatial pattern,” Nature 397, 610–612 (1999).
[CrossRef] [PubMed]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Koenderink, J. J.

W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
[CrossRef] [PubMed]

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Kowler, E.

B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
[CrossRef] [PubMed]

Ledgeway, T.

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?,” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

Lelkens, A. M. M.

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Levi, D. M.

T. Banton, D. M. Levi, “Spatial localization of motion-defined and luminance-defined contours,” Vision Res. 33, 2225–2237 (1993).
[CrossRef] [PubMed]

Lindner, A.

A. Lindner, U. J. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, G. Sperling, “Attention-generation apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

G. Sperling, Z.-L. Lu, “A systems analysis of visual motion perception,” in High-Level Motion Processing, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 153–183.

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

McOwan, P. W.

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Murphy, B. J.

B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
[CrossRef] [PubMed]

Nishida, S.

S. Nishida, A. Johnston, “Influence of motion signals on the perceived position of spatial pattern,” Nature 397, 610–612 (1999).
[CrossRef] [PubMed]

Patzwahl, D. R.

D. R. Patzwahl, J. M. Zanker, “Mechanisms for human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling,” Eur. J. Neurosci. 12, 273–282 (2000).
[CrossRef] [PubMed]

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
[CrossRef]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
[CrossRef] [PubMed]

Petersen, D.

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

Pitman, E. G. J.

E. G. J. Pitman, “A note on normal correlation,” Biometrika 31, 9–12 (1939).
[CrossRef]

Poggio, T.

T. Poggio, W. Reichardt, “On the representation of multi-input systems: computational properties of polynomial algorithms,” Biol. Cybern. 37, 167–186 (1980).
[CrossRef]

Reichardt, W.

T. Poggio, W. Reichardt, “On the representation of multi-input systems: computational properties of polynomial algorithms,” Biol. Cybern. 37, 167–186 (1980).
[CrossRef]

Schönle, P.

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

Scott-Samuel, N. E.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Smith, A. T.

L. R. Harris, A. T. Smith, “Interactions between first- and second-order motion revealed by optokinetic nystagmus,” Exp. Brain Res. 130, 67–72 (2000).
[CrossRef] [PubMed]

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?,” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

Sperling, G.

Z.-L. Lu, G. Sperling, “Attention-generation apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vision 4, 183–207 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

G. Sperling, Z.-L. Lu, “A systems analysis of visual motion perception,” in High-Level Motion Processing, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 153–183.

Steinman, R. M.

B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
[CrossRef] [PubMed]

Van de Grind, W. A.

W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
[CrossRef] [PubMed]

Van Doorn, A. J.

W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Zanker, J. M.

D. R. Patzwahl, J. M. Zanker, “Mechanisms for human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling,” Eur. J. Neurosci. 12, 273–282 (2000).
[CrossRef] [PubMed]

J. M. Zanker, “Perceptual learning in primary and secondary motion vision,” Vision Res. 39, 1293–1304 (1999).
[CrossRef] [PubMed]

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Proc. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
[CrossRef]

J. M. Zanker, I. S. Hüpgens, “Interaction between primary and secondary mechanisms in human motion perception,” Vision Res. 34, 1255–1266 (1994).
[CrossRef] [PubMed]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a new psychophysical paradigm indicating two levels of visual motion perception,” Naturwissenschaften 77, 243–246 (1990).
[CrossRef] [PubMed]

J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), pp. 156–165.

J. M. Zanker, J. Zeil, Motion Vision: Computational, Neural and Ecological Constraints (Springer, Berlin, 2001).

Zeil, J.

J. M. Zanker, J. Zeil, Motion Vision: Computational, Neural and Ecological Constraints (Springer, Berlin, 2001).

Zhou, Y.-X.

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Biol. Cybern. (1)

T. Poggio, W. Reichardt, “On the representation of multi-input systems: computational properties of polynomial algorithms,” Biol. Cybern. 37, 167–186 (1980).
[CrossRef]

Biometrika (1)

E. G. J. Pitman, “A note on normal correlation,” Biometrika 31, 9–12 (1939).
[CrossRef]

Curr. Biol. (2)

O. J. Braddick, “Moving on the surface,” Curr. Biol. 4, 534–536 (1994).
[CrossRef] [PubMed]

O. J. Braddick, “Motion may be seen but not used,” Curr. Biol. 2, 587–589 (1992).
[CrossRef]

Eur. J. Neurosci. (2)

D. Braun, D. Petersen, P. Schönle, M. Fahle, “Deficits and recovery of first-order and second-order motion perception in patients with unilateral cortical lesions,” Eur. J. Neurosci. 10, 2117–2128 (1998).
[CrossRef] [PubMed]

D. R. Patzwahl, J. M. Zanker, “Mechanisms for human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling,” Eur. J. Neurosci. 12, 273–282 (2000).
[CrossRef] [PubMed]

Exp. Brain Res. (2)

L. R. Harris, A. T. Smith, “Interactions between first- and second-order motion revealed by optokinetic nystagmus,” Exp. Brain Res. 130, 67–72 (2000).
[CrossRef] [PubMed]

A. Lindner, U. J. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Nature (2)

Z.-L. Lu, G. Sperling, “Attention-generation apparent motion,” Nature 377, 237–239 (1995).
[CrossRef] [PubMed]

S. Nishida, A. Johnston, “Influence of motion signals on the perceived position of spatial pattern,” Nature 397, 610–612 (1999).
[CrossRef] [PubMed]

Naturwissenschaften (1)

J. M. Zanker, “Theta motion: a new psychophysical paradigm indicating two levels of visual motion perception,” Naturwissenschaften 77, 243–246 (1990).
[CrossRef] [PubMed]

NeuroReport (2)

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials in humans reflecting the direction of object motion,” NeuroReport 4, 379–882 (1993).
[CrossRef] [PubMed]

D. R. Patzwahl, T. Elbert, J. M. Zanker, E. Altenmüller, “The cortical representation of object motion in man is interindividually variable,” NeuroReport 7, 469–472 (1996).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

Proc. R. Soc. London B (1)

A. Hayes, “Apparent position governs contour-element binding by the visual system,” Proc. R. Soc. London B 267, 1341–1345 (2000).
[CrossRef]

Proc. R. Soc. London Ser. B (2)

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Proc. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

Science (1)

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Spatial Vision (2)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vision 4, 183–207 (1989).
[CrossRef] [PubMed]

Vision Res. (13)

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?,” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

J. M. Zanker, I. S. Hüpgens, “Interaction between primary and secondary mechanisms in human motion perception,” Vision Res. 34, 1255–1266 (1994).
[CrossRef] [PubMed]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

J. M. Zanker, “Perceptual learning in primary and secondary motion vision,” Vision Res. 39, 1293–1304 (1999).
[CrossRef] [PubMed]

B. J. Murphy, E. Kowler, R. M. Steinman, “Slow oculomotor control in the presence of moving backgrounds,” Vision Res. 15, 1263–1268 (1975).
[CrossRef] [PubMed]

W. A. Van de Grind, J. J. Koenderink, A. J. Van Doorn, “The distribution of human motion detector properties in the monocular visual field,” Vision Res. 26, 797–810 (1986).
[CrossRef] [PubMed]

R. L. DeValois, K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vision Res. 31, 1619–1626 (1991).
[CrossRef]

T. Banton, D. M. Levi, “Spatial localization of motion-defined and luminance-defined contours,” Vision Res. 33, 2225–2237 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (2)

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

D. R. Patzwahl, J. M. Zanker, E. Altenmüller, “Cortical potentials reflecting motion processing in humans,” Visual Neurosci. 11, 1135–1147 (1994).
[CrossRef]

Other (4)

J. M. Zanker, J. Zeil, Motion Vision: Computational, Neural and Ecological Constraints (Springer, Berlin, 2001).

G. Sperling, Z.-L. Lu, “A systems analysis of visual motion perception,” in High-Level Motion Processing, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 153–183.

J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), pp. 156–165.

P. E. Hallett, “Eye movements,” in Handbook of Perception and Human Performance I. K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 10-1–10-112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental results for luminance-defined objects (sketched as inset). (a) Scatter diagram of perceived motion direction (ordinate) plotted for each of 80 trials as function of the actual direction of object motion (abscissa) for subject MBH; the diagonal line indicates the veridical direction. (b) Histogram of direction-estimation errors (the difference between perceived and veridical motion direction) for subject MBH. (c) Means and SEMs (n=80) of the estimation errors for each of six subjects (indicated by initials).

Fig. 2
Fig. 2

Experimental results for Fourier motion objects (sketched as inset). Other particulars are the same as for Fig. 1.

Fig. 3
Fig. 3

Experimental results for drift-balanced objects (sketched as inset). Other particulars are the same as for Fig. 1.  

Fig. 4
Fig. 4

Experimental results for theta motion objects (sketched as inset). (a) Scatter diagram of perceived motion direction (ordinate) for leftward (+45 deg, diamonds) and rightward (-45 deg, squares) relative texture motion, respectively, plotted as function of the actual direction of object motion (abscissa); the diagonal line indicates the veridical direction. (b) Histograms of direction-estimation errors (the difference between perceived and veridical motion direction) for the two conditions (indicated by different shading). (c) Means and SEMs (n=80) of the estimation errors for each of six subjects for the two conditions (indicated by different shading).

Fig. 5
Fig. 5

Models for the detection of theta motion. (a) Two-layer motion-detector model as originally proposed: The output of a fine-grain array of EMDs is spatially integrated and then used as input for a second, coarse-grain array of EMDs. (b) Recursive implementation: The output of the motion-detector network is fed back after appropriate spatial pooling into the same network. (c) Network of collateral connections: The output of a primary, fine-grain network of EMDs is processed after spatial integration in a secondary, coarse-grain network of EMDs.

Tables (1)

Tables Icon

Table 1 Mean Estimation Errors for Fourier and Theta (+45 and -45 deg Texture Motion) Object Motion for Four Subjects for Three Stimulus Configurations

Metrics