Abstract

Complex (second-order) channels have been useful in explaining many of the phenomena of perceived texture segregation. These channels contain two stages of linear filtering with an intermediate pointwise nonlinearity. One unanswered question about these hypothetical channels is that of the relationship between the preferred orientations of the two stages of filtering. Is a particular orientation at the second stage equally likely to occur with all orientations at the first stage, or is there a bias in the “mapping” between the two stages’ preferred orientations? In this study we consider two possible mappings: that where the orientations at the two stages are identical (called “consistent” here) and that where the orientations at the two stages are perpendicular (“inconsistent”). We explore these mappings using a texture-segregation task with textures composed of arrangements of grating-patch elements. The results imply that, to explain perceived texture segregation, complex channels with a consistent orientation mapping must be either somewhat more prevalent or more effective than those with an inconsistent mapping.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.
  2. N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
    [CrossRef] [PubMed]
  3. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
    [CrossRef] [PubMed]
  4. N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
    [CrossRef] [PubMed]
  5. N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
    [CrossRef] [PubMed]
  6. H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
    [CrossRef] [PubMed]
  7. H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
    [CrossRef]
  8. F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
    [CrossRef]
  9. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
    [CrossRef] [PubMed]
  10. U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
    [CrossRef] [PubMed]
  11. U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
    [CrossRef] [PubMed]
  12. H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
    [CrossRef] [PubMed]
  13. A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
    [CrossRef] [PubMed]
  14. N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.
  15. D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
    [CrossRef]
  16. D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
    [CrossRef]
  17. A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
    [CrossRef] [PubMed]
  18. A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
    [CrossRef] [PubMed]
  19. J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
    [CrossRef] [PubMed]
  20. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  21. N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
    [CrossRef]
  22. N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
    [CrossRef] [PubMed]
  23. D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
    [CrossRef]
  24. J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.
  25. J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.
  26. S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.
  27. T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
    [CrossRef] [PubMed]
  28. S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
    [CrossRef] [PubMed]
  29. O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
    [CrossRef]
  30. Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
    [CrossRef] [PubMed]
  31. J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
    [CrossRef] [PubMed]
  32. S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
    [CrossRef] [PubMed]
  33. A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
    [CrossRef] [PubMed]
  34. S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
    [CrossRef] [PubMed]
  35. H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
    [CrossRef] [PubMed]
  36. I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
    [CrossRef]
  37. J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.
  38. F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
    [CrossRef] [PubMed]
  39. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
    [CrossRef] [PubMed]
  40. D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
    [CrossRef] [PubMed]
  41. F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
    [CrossRef] [PubMed]
  42. L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).
  43. I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

2001 (1)

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

2000 (4)

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

1999 (5)

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

1998 (3)

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

1997 (4)

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

1996 (1)

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

1995 (4)

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

1994 (1)

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

1993 (3)

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

1992 (5)

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

1991 (1)

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

1989 (2)

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

1985 (2)

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Assad, W.

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

Baker, C. L.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Beck, J.

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Bergen, J. R.

J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

Caelli, T.

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Chubb, C.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Chukoskie, L.

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

Dakin, S.

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

Edelman, G. M.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Field, D. J.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Graham, N.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Grossberg, S.

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Habak, C.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

Hayes, A.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Hess, R. F.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Humaran, M.

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Hwang, D.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

Ivry, R.

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

Keeble, D. R. T.

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Kingdom, F. A. A.

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Landy, M. S.

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

Levi, D. M.

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

Li, Z.

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

Mareschal, I.

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Mingolla, E.

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Morgan, M. J.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Moulden, B.

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Mussap, A. J.

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

Nothdurft, H. C.

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

Oruc, I.

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

Pelli, D. G.

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

Polat, U.

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Prazdny, K.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Richards, W. A.

Robson, J. G.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

Rosenfeld, A.

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

Rosenfeld, Z.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Sagi, D.

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Solomon, J. A.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Sperling, G.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Sporns, O.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Sutter, A.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

Tonini, G.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Venkatesan, C.

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Watson, A. B.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Waugh, S. J.

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

Wilkinson, F.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

Wilson, H. R.

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

Wolfson, S. S.

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

Zucker, S. W.

S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.

Curr. Dir. Psychol. Sci. (1)

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

J. Opt. Soc. Am. A (1)

Ophthalmic Physiol. Opt. (1)

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Percept. Psychophys. (3)

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Spatial Vision (6)

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Vision Res. (20)

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

Visual Neurosci. (1)

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Other (7)

J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.

J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagrams showing complex channels involved in the perceived segregation of texture regions.2,13,14 The first-stage filter is known to be orientation selective5 and spatial-frequency selective.4 The intermediate stage in the complex channels is known3 to be expansive with an exponent k of approximately 3 or 4. The question of orientation mapping—how the preferred orientations at the first and second-stage filters are related—has not been answered. Here we study two possible mappings: “inconsistent,” where the orientations at the two stages are perpendicular (top row), and “consistent,” where the orientations at the two stages are parallel (bottom row).

Fig. 2
Fig. 2

Stimulus examples with vertical elements. (a) Consistent pattern, in the background. Outside the rectangle the pattern is vertical stripes and the elements are vertical. Inside the rectangle the pattern is checkered. The rectangle is in the middle position oriented vertically. The phases of each element are identical (positive sine phase) so this is a constant-phase pattern. (b) Inconsistent pattern, inside the rectangle. In the rectangle the pattern is horizontal stripes and the elements are vertical. Outside the rectangle the pattern is checkered. The rectangle is in the top position oriented horizontally. The phase of each element is randomly chosen to be either positive-sine- or negative-sine phase, so this is a random-phase pattern. All the mentioned factors (horizontal versus vertical element orientation, consistent versus inconsistent stripe orientation, stripes outside versus inside the rectangle, rectangle oriented horizontally versus vertically, three positions of rectangle, constant phase versus random phase) were counterbalanced in the set of patterns used in the experiments here.

Fig. 3
Fig. 3

At the top, small portions from the striped regions of two patterns are shown. On the right, channels with inconsistent and consistent orientation mapping are schematically indicated. Each gray-level image in the interior shows the complex channel’s output immediately after the intermediate nonlinearity (before the second-stage filter); the brightest points indicate the maximal responses and the darkest points the minimal. Superimposed on these gray-level images are sketches of the receptive field of the second-stage filter to help in deducing the final output of the complex channel (the output after the second-stage filter). As can be deduced, this final output in the striped region will be modulated only when the orientation condition in the channel matches that in the striped region of the pattern.

Fig. 4
Fig. 4

Results of the experiments with constant-phase patterns for five observers. The left (respectively, right) panel for an individual observer shows the results for patterns where the striped texture arrangement was inside (respectively, outside) the rectangle. Each panel shows the results as a function of contrast, where the solid and the open symbols show the probability of correct response for consistent and inconsistent patterns, respectively. (Each data point in the figure shows the mean performance over 5 sessions, where the performance in each session was the proportion correct on 48 trials. The error bars show ± 1 standard error of that mean.) cpd, cycles per degree.

Fig. 5
Fig. 5

Performance in the constant-phase experiments (left panel) and the random-phase experiments (right panel). Each panel shows the averages over the five observers and also averages over the cases in which the striped regions were inside or outside the rectangle. The left panel shows the average of all ten panels in Fig. 4. The error bars show ± 1 standard error (computed over observers).

Metrics