Abstract

Complex (second-order) channels have been useful in explaining many of the phenomena of perceived texture segregation. These channels contain two stages of linear filtering with an intermediate pointwise nonlinearity. One unanswered question about these hypothetical channels is that of the relationship between the preferred orientations of the two stages of filtering. Is a particular orientation at the second stage equally likely to occur with all orientations at the first stage, or is there a bias in the “mapping” between the two stages’ preferred orientations? In this study we consider two possible mappings: that where the orientations at the two stages are identical (called “consistent” here) and that where the orientations at the two stages are perpendicular (“inconsistent”). We explore these mappings using a texture-segregation task with textures composed of arrangements of grating-patch elements. The results imply that, to explain perceived texture segregation, complex channels with a consistent orientation mapping must be either somewhat more prevalent or more effective than those with an inconsistent mapping.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.
  2. N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
    [CrossRef] [PubMed]
  3. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
    [CrossRef] [PubMed]
  4. N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
    [CrossRef] [PubMed]
  5. N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
    [CrossRef] [PubMed]
  6. H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
    [CrossRef] [PubMed]
  7. H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
    [CrossRef]
  8. F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
    [CrossRef]
  9. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
    [CrossRef] [PubMed]
  10. U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
    [CrossRef] [PubMed]
  11. U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
    [CrossRef] [PubMed]
  12. H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
    [CrossRef] [PubMed]
  13. A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
    [CrossRef] [PubMed]
  14. N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.
  15. D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
    [CrossRef]
  16. D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
    [CrossRef]
  17. A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
    [CrossRef] [PubMed]
  18. A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
    [CrossRef] [PubMed]
  19. J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
    [CrossRef] [PubMed]
  20. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  21. N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
    [CrossRef]
  22. N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
    [CrossRef] [PubMed]
  23. D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
    [CrossRef]
  24. J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.
  25. J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.
  26. S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.
  27. T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
    [CrossRef] [PubMed]
  28. S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
    [CrossRef] [PubMed]
  29. O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
    [CrossRef]
  30. Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
    [CrossRef] [PubMed]
  31. J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
    [CrossRef] [PubMed]
  32. S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
    [CrossRef] [PubMed]
  33. A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
    [CrossRef] [PubMed]
  34. S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
    [CrossRef] [PubMed]
  35. H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
    [CrossRef] [PubMed]
  36. I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
    [CrossRef]
  37. J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.
  38. F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
    [CrossRef] [PubMed]
  39. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
    [CrossRef] [PubMed]
  40. D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
    [CrossRef] [PubMed]
  41. F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
    [CrossRef] [PubMed]
  42. L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).
  43. I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

2001 (1)

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

2000 (4)

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

1999 (5)

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

1998 (3)

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

1997 (4)

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

1996 (1)

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

1995 (4)

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

1994 (1)

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

1993 (3)

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

1992 (5)

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

1991 (1)

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

1989 (2)

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

1985 (2)

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Assad, W.

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

Baker, C. L.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Beck, J.

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Bergen, J. R.

J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.

Brainard, D. H.

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

Caelli, T.

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Chubb, C.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Chukoskie, L.

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

Dakin, S.

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

Edelman, G. M.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Field, D. J.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Graham, N.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.

Grossberg, S.

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Habak, C.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

Hayes, A.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Hess, R. F.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Humaran, M.

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Hwang, D.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

Ivry, R.

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

Keeble, D. R. T.

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Kingdom, F. A. A.

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Landy, M. S.

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

Levi, D. M.

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

Li, Z.

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

Mareschal, I.

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Mingolla, E.

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Morgan, M. J.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Moulden, B.

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Mussap, A. J.

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

Nothdurft, H. C.

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

Oruc, I.

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

Pelli, D. G.

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

Polat, U.

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Prazdny, K.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Richards, W. A.

Robson, J. G.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

Rosenfeld, A.

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

Rosenfeld, Z.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

Sagi, D.

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Solomon, J. A.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Sperling, G.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Sporns, O.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Sutter, A.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

Tonini, G.

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Venkatesan, C.

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Watson, A. B.

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Waugh, S. J.

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

Wilkinson, F.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

Wilson, H. R.

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

Wolfson, S. S.

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

Zucker, S. W.

S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.

Curr. Dir. Psychol. Sci. (1)

N. Graham, “Breaking the visual stimulus into parts,” Curr. Dir. Psychol. Sci. 1, 55–61 (1992).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

L. Chukoskie, M. S. Landy, “2nd-order summation experiments indicate multiple 2nd-order channels,” Invest. Ophthalmol. Visual Sci. 38, S2 (1997).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

I. Oruc, M. S. Landy, “2nd-order summation experiments indicate narrow 2nd-order channel bandwidth,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S805 (2000).

J. Opt. Soc. Am. A (1)

Ophthalmic Physiol. Opt. (1)

N. Graham, A. Sutter, C. Venkatesan, M. Humaran, “Nonlinear processes in perceived region segregation: orientation selectivity of complex channels,” Ophthalmic Physiol. Opt. 12, 142–146 (1992).
[CrossRef] [PubMed]

Percept. Psychophys. (3)

A. Sutter, J. Beck, N. Graham, “Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model,” Percept. Psychophys. 46, 312–332 (1989).
[CrossRef] [PubMed]

H. C. Nothdurft, “Feature analysis and the role of similar-ity in preattentive vision,” Percept. Psychophys. 52, 355–375 (1992).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations,” Percept. Psychophys. 38, 141–171 (1985).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

O. Sporns, G. Tonini, G. M. Edelman, “`Modeling perceptual grouping and figure–ground segregation by means of active reentrant connections,” Proc. Natl. Acad. Sci. USA 88, 129–133 (1991).
[CrossRef]

Spatial Vision (6)

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

J. Beck, A. Rosenfeld, R. Ivry, “Line segregation,” Spatial Vision 4, 75–101 (1989).
[CrossRef] [PubMed]

D. M. Levi, “Long range interactions in vision” (editorial), Spatial Vision 12, 125–127 (1999).
[CrossRef]

D. H. Brainard, “The psychophysics toolbox,” Spatial Vision 10, 443–446 (1997).
[CrossRef]

D. G. Pelli, “The Video Toolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef]

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Vision Res. (20)

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

J. A. Solomon, A. B. Watson, M. J. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation,” Vision Res. 32, 719–743 (1992).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) channels in texture segregation,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, W. Assad, “Concentric orientation summation in human form vision,” Vision Res. 17, 2325–2330 (1997).
[CrossRef]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field,’ ” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

S. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

A. J. Mussap, “Orientation integration in detection and discrimination of contrast-modulated patterns,” Vision Res. 41, 295–311 (2001).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial-frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. R. T. Keeble, “On the mechanism for scale invariance in orientation-defined textures,” Vision Res. 39, 1477–1490 (1999).
[CrossRef] [PubMed]

Visual Neurosci. (1)

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Other (7)

J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, D. Regan, ed. (Macmillan, New York, 1991), Vol. 10B, pp. 114–134.

J. Beck, “Textural segmentation,” in Organization and Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale, N.J., 1982), pp. 285–317.

J. Beck, K. Prazdny, Z. Rosenfeld, “A theory of textural segmentation,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 1–38.

S. W. Zucker, “Computational and psychophysical experiments in grouping: early orientation selection,” in Human and Machine Vision, J. Beck, B. Hope, A. Rosenfeld, eds. (Academic, New York, 1983), pp. 545–567.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

N. Graham, “Complex channels, early local nonlinearities, and normalization in perceived texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 273–290.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics