Abstract

Visual search rate was used to assess attentional resources required for detection of opposing motions defined either by luminance or by modulations of texture contrast, flicker, or size. Though luminance-based targets were detected quickly, search through second-order motion was slow. Control experiments ruled out stimuli visibility, complexity, eccentricity sensitivity, and attributes of the carrier as possible accounts. Results suggest separate processing of the two types of stimuli: Luminance-based motion is detected by spatiotemporal filters, whereas second-order motion is likely processed by a capacity-limited, later stage. Rate-reducing effects of increased contrast and speed mirrored previous research suggesting that effortful feature tracking may be the mechanism.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
    [CrossRef] [PubMed]
  2. J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
    [CrossRef] [PubMed]
  3. H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
    [CrossRef] [PubMed]
  4. A. M. Treisman, G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980).
    [CrossRef] [PubMed]
  5. A. Treisman, “Search, similarity, and integration of features between and within dimensions,” J. Exp. Psychol. Hum. Percep. Perform. 17, 652–676 (1991).
    [CrossRef]
  6. J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
    [CrossRef] [PubMed]
  7. H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).
  8. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  9. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  10. J. P. H. van Santen, G. Sperling, “Elaborate Reichradt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  11. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  12. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef] [PubMed]
  13. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  14. A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
    [CrossRef]
  15. A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
    [CrossRef] [PubMed]
  16. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [CrossRef] [PubMed]
  17. J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
    [CrossRef]
  18. A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
    [CrossRef]
  19. J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
    [CrossRef] [PubMed]
  20. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
    [CrossRef]
  21. A. E. Seiffert, P. Cavanagh, “Position-based motion perception for color and texture stimuli: effects of contrast and speed,” Vision Res. 39, 4172–4185 (1999).
    [CrossRef]
  22. A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
    [CrossRef] [PubMed]
  23. O. I. Ukkonen, A. M. Derrington, “Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts,” Vision Res. 40, 3359–3371 (2000).
    [CrossRef] [PubMed]
  24. H. Pashler, “Detecting conjunctions of color and form: reassessing the serial search hypothesis,” Percept. Psychophys. 41, 191–201 (1987).
    [CrossRef] [PubMed]
  25. K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), pp. 411–422.
  26. G. D. Logan, “Attention demands of visual search,” Memory Cogn. 6, 446–453 (1978).
    [CrossRef]
  27. J. T. Townsend, “Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee, but they can (and should) be distinguished,” Psychol. Sci. 1, 46–54 (1990).
    [CrossRef]
  28. K. Nakayama, J. S. Joseph, “Attention, pattern recognition, and pop-out in visual search,” in The Attentive Brain, R. Parasuraman, ed. (MIT Press, Cambridge, Mass., 1998), pp. 279–298.
  29. P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
    [CrossRef] [PubMed]
  30. P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  31. M. M. Chun, J. M. Wolfe, “Just say no: How are visual searches terminated when there is no target present?” Cogn. Psychol. 30, 39–78 (1996).
    [CrossRef] [PubMed]
  32. P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
    [CrossRef] [PubMed]
  33. P. Verghese, L. S. Stone, “Spatial layout affects speed discrimination,” Vision Res. 37, 397–406 (1997).
    [CrossRef] [PubMed]
  34. G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
    [CrossRef] [PubMed]
  35. G. F. Woodman, S. J. Luck, “Electrophysiological measurements of rapid shifts of attention during visual search,” Nature 400, 867–869 (1999).
    [CrossRef] [PubMed]
  36. C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
    [CrossRef] [PubMed]
  37. J. M. Wolfe, “What can 1 million trials tell us about visual search?” Psychol. Sci. 9, 33–39 (1998).
    [CrossRef]
  38. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef] [PubMed]
  39. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [CrossRef] [PubMed]
  40. J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
    [CrossRef] [PubMed]
  41. Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
    [CrossRef] [PubMed]
  42. P. W. McOwan, A. Johnston, “Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays,” Curr. Biol. 6, 1343–1346 (1996).
    [CrossRef] [PubMed]
  43. B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
    [CrossRef]
  44. H. A. Allen, A. M. Derrington, “Slow discrimination of contrast-defined expansion patterns,” Vision Res. 40, 735–744 (2000).
    [CrossRef] [PubMed]
  45. O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
    [CrossRef] [PubMed]
  46. M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
    [CrossRef]
  47. M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).
  48. R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
    [CrossRef] [PubMed]
  49. L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
    [CrossRef]
  50. H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).
  51. Z. L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]
  52. R. B. Ivry, A. Cohen, “Dissociation of short- and long-range apparent motion in visual search,” J. Exp. Psychol. Hum. Percept. Perform. 16, 317–331 (1990).
    [CrossRef] [PubMed]
  53. T. Horowitz, A. Treisman, “Attention and apparent motion,” Spatial Vision 8, 193–219 (1994).
    [CrossRef] [PubMed]
  54. O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
    [CrossRef]
  55. I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London Ser. B 257, 165–173 (1994).
    [CrossRef]
  56. N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?,” Vision Res. 39, 2853–2865 (1999).
    [CrossRef] [PubMed]
  57. S. J. Anderson, D. C. Burr, “Spatial summation properties of directionally selective mechanisms in human vision,” J. Opt. Soc. Am. A 8, 1330–1339 (1991).
    [CrossRef] [PubMed]
  58. S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
    [CrossRef]

2000 (4)

O. I. Ukkonen, A. M. Derrington, “Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts,” Vision Res. 40, 3359–3371 (2000).
[CrossRef] [PubMed]

G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
[CrossRef] [PubMed]

Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
[CrossRef] [PubMed]

H. A. Allen, A. M. Derrington, “Slow discrimination of contrast-defined expansion patterns,” Vision Res. 40, 735–744 (2000).
[CrossRef] [PubMed]

1999 (5)

G. F. Woodman, S. J. Luck, “Electrophysiological measurements of rapid shifts of attention during visual search,” Nature 400, 867–869 (1999).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position-based motion perception for color and texture stimuli: effects of contrast and speed,” Vision Res. 39, 4172–4185 (1999).
[CrossRef]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?,” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
[CrossRef]

1998 (3)

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

J. M. Wolfe, “What can 1 million trials tell us about visual search?” Psychol. Sci. 9, 33–39 (1998).
[CrossRef]

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
[CrossRef] [PubMed]

1997 (3)

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

P. Verghese, L. S. Stone, “Spatial layout affects speed discrimination,” Vision Res. 37, 397–406 (1997).
[CrossRef] [PubMed]

J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
[CrossRef]

1996 (4)

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

P. W. McOwan, A. Johnston, “Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays,” Curr. Biol. 6, 1343–1346 (1996).
[CrossRef] [PubMed]

M. M. Chun, J. M. Wolfe, “Just say no: How are visual searches terminated when there is no target present?” Cogn. Psychol. 30, 39–78 (1996).
[CrossRef] [PubMed]

1995 (3)

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Z. L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

1994 (4)

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London Ser. B 257, 165–173 (1994).
[CrossRef]

T. Horowitz, A. Treisman, “Attention and apparent motion,” Spatial Vision 8, 193–219 (1994).
[CrossRef] [PubMed]

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

1993 (4)

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

1992 (5)

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
[CrossRef] [PubMed]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

1991 (3)

S. J. Anderson, D. C. Burr, “Spatial summation properties of directionally selective mechanisms in human vision,” J. Opt. Soc. Am. A 8, 1330–1339 (1991).
[CrossRef] [PubMed]

A. Treisman, “Search, similarity, and integration of features between and within dimensions,” J. Exp. Psychol. Hum. Percep. Perform. 17, 652–676 (1991).
[CrossRef]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

1990 (4)

R. B. Ivry, A. Cohen, “Dissociation of short- and long-range apparent motion in visual search,” J. Exp. Psychol. Hum. Percept. Perform. 16, 317–331 (1990).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

J. T. Townsend, “Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee, but they can (and should) be distinguished,” Psychol. Sci. 1, 46–54 (1990).
[CrossRef]

1989 (2)

B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
[CrossRef]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (2)

P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

H. Pashler, “Detecting conjunctions of color and form: reassessing the serial search hypothesis,” Percept. Psychophys. 41, 191–201 (1987).
[CrossRef] [PubMed]

1986 (1)

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

1985 (3)

1980 (2)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

A. M. Treisman, G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980).
[CrossRef] [PubMed]

1978 (1)

G. D. Logan, “Attention demands of visual search,” Memory Cogn. 6, 446–453 (1978).
[CrossRef]

1965 (1)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Adelson, E. H.

Ahumada, A. J.

Allen, H. A.

H. A. Allen, A. M. Derrington, “Slow discrimination of contrast-defined expansion patterns,” Vision Res. 40, 735–744 (2000).
[CrossRef] [PubMed]

Alvarez, G. A.

G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
[CrossRef] [PubMed]

Anderson, S. J.

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London Ser. B 257, 165–173 (1994).
[CrossRef]

S. J. Anderson, D. C. Burr, “Spatial summation properties of directionally selective mechanisms in human vision,” J. Opt. Soc. Am. A 8, 1330–1339 (1991).
[CrossRef] [PubMed]

Anstis, S. M.

Ashida, H.

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

Badcock, D. R.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

Baker, C. L.

Barlow, H. B.

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

Bergen, J. R.

Berglan, L. R.

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

Braddick, O. J.

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

Burr, D. C.

Buxton, H.

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Cavanagh, P.

A. E. Seiffert, P. Cavanagh, “Position-based motion perception for color and texture stimuli: effects of contrast and speed,” Vision Res. 39, 4172–4185 (1999).
[CrossRef]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

Chubb, C.

Chun, M. M.

M. M. Chun, J. M. Wolfe, “Just say no: How are visual searches terminated when there is no target present?” Cogn. Psychol. 30, 39–78 (1996).
[CrossRef] [PubMed]

Cohen, A.

R. B. Ivry, A. Cohen, “Dissociation of short- and long-range apparent motion in visual search,” J. Exp. Psychol. Hum. Percept. Perform. 16, 317–331 (1990).
[CrossRef] [PubMed]

Conte, M. M.

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

Derrington, A. M.

H. A. Allen, A. M. Derrington, “Slow discrimination of contrast-defined expansion patterns,” Vision Res. 40, 735–744 (2000).
[CrossRef] [PubMed]

O. I. Ukkonen, A. M. Derrington, “Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts,” Vision Res. 40, 3359–3371 (2000).
[CrossRef] [PubMed]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

Dienes, Z.

J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
[CrossRef] [PubMed]

Dosher, B. A.

Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
[CrossRef] [PubMed]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
[CrossRef]

Driver, J.

J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
[CrossRef] [PubMed]

Egeth, H.

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

Fleet, D.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
[CrossRef] [PubMed]

Gelade, G.

A. M. Treisman, G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980).
[CrossRef] [PubMed]

Georgeson, M. A.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?,” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Gurnsey, R.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
[CrossRef] [PubMed]

Harris, L. R.

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Henning, G. B.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Hess, R. F.

Holliday, I. E.

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London Ser. B 257, 165–173 (1994).
[CrossRef]

Horowitz, T.

T. Horowitz, A. Treisman, “Attention and apparent motion,” Spatial Vision 8, 193–219 (1994).
[CrossRef] [PubMed]

Horowitz, T. S.

G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Ichikawa, M.

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

Ivry, R. B.

R. B. Ivry, A. Cohen, “Dissociation of short- and long-range apparent motion in visual search,” J. Exp. Psychol. Hum. Percept. Perform. 16, 317–331 (1990).
[CrossRef] [PubMed]

Johnston, A.

P. W. McOwan, A. Johnston, “Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays,” Curr. Biol. 6, 1343–1346 (1996).
[CrossRef] [PubMed]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Joseph, J. S.

K. Nakayama, J. S. Joseph, “Attention, pattern recognition, and pop-out in visual search,” in The Attentive Brain, R. Parasuraman, ed. (MIT Press, Cambridge, Mass., 1998), pp. 279–298.

Kaneko, H.

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

Kastner, S.

S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
[CrossRef]

Landy, M. S.

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
[CrossRef]

Levick, W. R.

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

Lindsey, D. T.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Liu, C. Q.

Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
[CrossRef] [PubMed]

Logan, G. D.

G. D. Logan, “Attention demands of visual search,” Memory Cogn. 6, 446–453 (1978).
[CrossRef]

Lu, Z. L.

Z. L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
[CrossRef] [PubMed]

Luck, S. J.

G. F. Woodman, S. J. Luck, “Electrophysiological measurements of rapid shifts of attention during visual search,” Nature 400, 867–869 (1999).
[CrossRef] [PubMed]

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

MacLeod, D. I.

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

McLeod, P.

J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
[CrossRef] [PubMed]

McOwan, P. W.

P. W. McOwan, A. Johnston, “Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays,” Curr. Biol. 6, 1343–1346 (1996).
[CrossRef] [PubMed]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Moore, C. M.

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

Nakayama, K.

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), pp. 411–422.

K. Nakayama, J. S. Joseph, “Attention, pattern recognition, and pop-out in visual search,” in The Attentive Brain, R. Parasuraman, ed. (MIT Press, Cambridge, Mass., 1998), pp. 279–298.

Nishida, S.

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

Nothdurft, H. C.

S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
[CrossRef]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

Ojima, S.

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

Ono, H.

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

Pantle, A.

Pashler, H.

H. Pashler, “Detecting conjunctions of color and form: reassessing the serial search hypothesis,” Percept. Psychophys. 41, 191–201 (1987).
[CrossRef] [PubMed]

Perkins, M. E.

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

Pigarev, I. N.

S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
[CrossRef]

Potechin, C.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
[CrossRef] [PubMed]

Robin, N.

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

Sato, T.

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

Scott-Samuel, N. E.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?,” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Seiffert, A. E.

A. E. Seiffert, P. Cavanagh, “Position-based motion perception for color and texture stimuli: effects of contrast and speed,” Vision Res. 39, 4172–4185 (1999).
[CrossRef]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Silverman, G. H.

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

Smith, A. T.

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Solomon, J. A.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Sperling, G.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Z. L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
[CrossRef]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborate Reichradt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

Stone, L. S.

P. Verghese, L. S. Stone, “Spatial layout affects speed discrimination,” Vision Res. 37, 397–406 (1997).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

Teller, D. Y.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Townsend, J. T.

J. T. Townsend, “Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee, but they can (and should) be distinguished,” Psychol. Sci. 1, 46–54 (1990).
[CrossRef]

Treisman, A.

T. Horowitz, A. Treisman, “Attention and apparent motion,” Spatial Vision 8, 193–219 (1994).
[CrossRef] [PubMed]

A. Treisman, “Search, similarity, and integration of features between and within dimensions,” J. Exp. Psychol. Hum. Percep. Perform. 17, 652–676 (1991).
[CrossRef]

Treisman, A. M.

A. M. Treisman, G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980).
[CrossRef] [PubMed]

Ukkonen, O. I.

O. I. Ukkonen, A. M. Derrington, “Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts,” Vision Res. 40, 3359–3371 (2000).
[CrossRef] [PubMed]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

van Santen, J. P. H.

Verghese, P.

P. Verghese, L. S. Stone, “Spatial layout affects speed discrimination,” Vision Res. 37, 397–406 (1997).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

Verstraten, F. A. J.

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

Victor, J. D.

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

Watson, A. B.

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Wolfe, G. M.

G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
[CrossRef] [PubMed]

Wolfe, J. M.

J. M. Wolfe, “What can 1 million trials tell us about visual search?” Psychol. Sci. 9, 33–39 (1998).
[CrossRef]

M. M. Chun, J. M. Wolfe, “Just say no: How are visual searches terminated when there is no target present?” Cogn. Psychol. 30, 39–78 (1996).
[CrossRef] [PubMed]

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

Woodman, G. F.

G. F. Woodman, S. J. Luck, “Electrophysiological measurements of rapid shifts of attention during visual search,” Nature 400, 867–869 (1999).
[CrossRef] [PubMed]

Zanker, J. M.

Cogn. Psychol. (2)

A. M. Treisman, G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980).
[CrossRef] [PubMed]

M. M. Chun, J. M. Wolfe, “Just say no: How are visual searches terminated when there is no target present?” Cogn. Psychol. 30, 39–78 (1996).
[CrossRef] [PubMed]

Curr. Biol. (1)

P. W. McOwan, A. Johnston, “Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays,” Curr. Biol. 6, 1343–1346 (1996).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. Suppl. (2)

M. Ichikawa, H. Ono, S. Nishida, T. Sato, “Depth perception from second order motion yoked to head movement,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 746 (1996).

H. Ashida, N. Robin, H. Kaneko, F. A. J. Verstraten, S. Ojima, “Second-order motion has little effect on human postural control,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S743 (1997).

J. Exp. Psychol. Hum. Percep. Perform. (1)

A. Treisman, “Search, similarity, and integration of features between and within dimensions,” J. Exp. Psychol. Hum. Percep. Perform. 17, 652–676 (1991).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform. (1)

R. B. Ivry, A. Cohen, “Dissociation of short- and long-range apparent motion in visual search,” J. Exp. Psychol. Hum. Percept. Perform. 16, 317–331 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (9)

J. Physiol. (London) (2)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

Memory Cogn. (1)

G. D. Logan, “Attention demands of visual search,” Memory Cogn. 6, 446–453 (1978).
[CrossRef]

Nature (3)

G. M. Wolfe, G. A. Alvarez, T. S. Horowitz, “Attention is fast but volition is slow,” Nature 406, 691 (2000).
[CrossRef] [PubMed]

G. F. Woodman, S. J. Luck, “Electrophysiological measurements of rapid shifts of attention during visual search,” Nature 400, 867–869 (1999).
[CrossRef] [PubMed]

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

H. Pashler, “Detecting conjunctions of color and form: reassessing the serial search hypothesis,” Percept. Psychophys. 41, 191–201 (1987).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

Proc. R. Soc. London Ser. B (2)

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London Ser. B 257, 165–173 (1994).
[CrossRef]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London Ser. B 250, 297–306 (1992).
[CrossRef]

Psychol. Sci. (2)

J. M. Wolfe, “What can 1 million trials tell us about visual search?” Psychol. Sci. 9, 33–39 (1998).
[CrossRef]

J. T. Townsend, “Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee, but they can (and should) be distinguished,” Psychol. Sci. 1, 46–54 (1990).
[CrossRef]

Psychon. Bull. Rev. (2)

C. M. Moore, H. Egeth, L. R. Berglan, S. J. Luck, “Are attentional dwell times inconsistent with serial visual search?” Psychon. Bull. Rev. 3, 360–365 (1996).
[CrossRef] [PubMed]

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

Science (1)

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

Spatial Vision (4)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

J. Driver, P. McLeod, Z. Dienes, “Are direction and speed coded independently by the visual system? Evidence from visual search,” Spatial Vision 6, 133–147 (1992).
[CrossRef] [PubMed]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

T. Horowitz, A. Treisman, “Attention and apparent motion,” Spatial Vision 8, 193–219 (1994).
[CrossRef] [PubMed]

Trends Neurosci. (1)

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

Vision Res. (18)

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow: II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

B. A. Dosher, M. S. Landy, G. Sperling, “Kinetic depth effect and optic flow: I. 3D shape from Fourier motion,” Vision Res. 29, 1789–1813 (1989).
[CrossRef]

H. A. Allen, A. M. Derrington, “Slow discrimination of contrast-defined expansion patterns,” Vision Res. 40, 735–744 (2000).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

Z.-L. Lu, C. Q. Liu, B. A. Dosher, “Attention mechanisms for multi-location first- and second-order motion perception,” Vision Res. 40, 173–186 (2000).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?,” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Z. L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 2801–2816 (1998).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

A. E. Seiffert, P. Cavanagh, “Position-based motion perception for color and texture stimuli: effects of contrast and speed,” Vision Res. 39, 4172–4185 (1999).
[CrossRef]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

O. I. Ukkonen, A. M. Derrington, “Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts,” Vision Res. 40, 3359–3371 (2000).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Spatial layout affects speed discrimination,” Vision Res. 37, 397–406 (1997).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (2)

S. Kastner, H. C. Nothdurft, I. N. Pigarev, “Neuronal responses to orientation and motion contrast in cat striate cortex,” Visual Neurosci. 16, 587–600 (1999).
[CrossRef]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Other (2)

K. Nakayama, J. S. Joseph, “Attention, pattern recognition, and pop-out in visual search,” in The Attentive Brain, R. Parasuraman, ed. (MIT Press, Cambridge, Mass., 1998), pp. 279–298.

K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), pp. 411–422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustrations of the stimulus patches used in Experiments 1 (LM, CM) and 2 (LM-N, CM-N). The modulation contrast is emphasized for printing.

Fig. 2
Fig. 2

Results of experiment 1 for LM and CM stimuli. Search times were averaged across observers and plotted as a function of set size. Upper panels, effect of speeds at a contrast of five times threshold; lower panels, effect of contrast at a speed of 0.5 Hz. Left panels, results for lower speed (0.5 Hz)/contrast (threshold×5), and right panels, results for higher speed (4.0 Hz)/contrast (threshold×40). Solid and dotted lines represent target-present and target-absent conditions, respectively. Search slopes (ms/item) are given at the right-hand ends. Error bars indicate standard errors of mean across observers, although some of them are smaller than the symbols.

Fig. 3
Fig. 3

Results of Experiment 2. Left panel, results of orientation search for LM and CM stimuli. The two right panels plot the results of motion search for LM-N and CM-N stimuli at speeds of 0.5 Hz and 4.0 Hz. Solid and dotted lines represent target-present and target-absent conditions, respectively. Search slopes (ms/item) are given at the right-hand ends. Error bars indicate standard errors of mean across observers.

Fig. 4
Fig. 4

Illustrations of the stimulus patches for Experiment 3. Static and dynamic carriers do not yield differences in one frame, so they are simply shown as LM and CM stimuli.

Fig. 5
Fig. 5

Results of Experiment 3 for two observers. Left and right panels show the results at a modulation depth of twice and five times the direction discrimination threshold, respectively. Solid and dotted lines represent target-present and target-absent conditions, respectively. Search slopes (ms/item) are given at the right-hand ends. Error bars indicate standard errors of mean across trials.

Fig. 6
Fig. 6

Illustrations of the stimulus patches for Experiment 3.  FL stimulus cannot be resolved within a single frame.

Fig. 7
Fig. 7

Results of Experiment 3. Circles, squares, and triangles represent the speed of 1.0, 2.1, and 4.2 c/deg, respectively. Solid and dotted lines represent target-present and target-absent conditions, respectively. Search slopes (ms/item) are given at the right-hand ends. Error bars indicate standard errors of mean across trials.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M(x)=sin[2π(fsx-ftt)+p0],
c(x, y)=Lm-L(x, y)Lm.
c(x, y)=mM(x),
c(x, y)=m2 [1+M(x)]sqw2πfccosπ4 x+fcsinπ4 y+pc,
c(x, y)=mM(y)+B(x, y).
c(x, y)=m[1+M(x)]B(x, y).
M(y)=m sinfe2πy-nπ2+p0,
c(x, y)=G(x, y)[M(y)+Bn(x, y)],
c(x, y)=G(x, y)[1+M(y)]Bn(x, y),
c(x, y)=mcG(x, y)1+m sin2πfey-nπ4sin(2πfcy+pc),
c(x, y)=G(x, y) 12sin2πf1y-nπ4+p1+sin2πf2y+nπ4+p2,

Metrics