Abstract

To study the neuronal circuitry underlying visual spatial-integration processes, we measured the effect of short and long chains of proximal Gabor-signal (GS) flankers (σ=λ=0.15°) on the contrast-discrimination function of a foveal GS target. We found that the same pattern of lateral masks enhanced target detection with low-contrast pedestals and strongly suppressed the discrimination of a range of intermediate pedestal contrasts (pedestal contrast <30%). Increasing the number of the flankers reversed the suppressive effect. The data suggest that the main influence of the proximal flankers is maintained by activity-dependent interactions and not by linear spatial summation. With an increased number of flankers, we found a nonmonotonic relationship between the discrimination thresholds and the number of flankers, supporting the notion that the discrimination thresholds are mediated by excitatory–inhibitory recurrent networks that manifest the dynamics of large neuronal populations in the neocortex [Proc. Natl. Acad. Sci. USA 94, 10426 (1997)].

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).
  2. F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
  3. C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  4. R. L. DeValois, K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1990).
  5. Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
    [CrossRef]
  6. U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
    [CrossRef] [PubMed]
  7. U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
    [CrossRef] [PubMed]
  8. B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
    [CrossRef] [PubMed]
  9. J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
    [CrossRef] [PubMed]
  10. M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
    [CrossRef] [PubMed]
  11. B. Dresp, “Dynamic characteristics of spatial mechanisms coding contour structures,” Spatial Vision 12, 129–142 (1999).
    [CrossRef] [PubMed]
  12. L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
    [PubMed]
  13. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).
  14. A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
    [CrossRef]
  15. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. A 2, 1160–1169 (1985).
    [CrossRef] [PubMed]
  16. U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
    [CrossRef] [PubMed]
  17. J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000).
    [CrossRef]
  18. C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
    [CrossRef] [PubMed]
  19. C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999).
    [CrossRef]
  20. L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
    [CrossRef] [PubMed]
  21. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
    [CrossRef] [PubMed]
  22. N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
    [CrossRef] [PubMed]
  23. J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991).
    [CrossRef]
  24. J. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
    [CrossRef]
  25. J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997).
    [CrossRef] [PubMed]
  26. D. Heeger, “Normalization of cell in cat striate cortex,” J. Neurosci. 9, 181–197 (1992).
  27. D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
    [CrossRef] [PubMed]
  28. M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
    [CrossRef] [PubMed]
  29. D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
    [CrossRef] [PubMed]
  30. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  31. U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).
    [CrossRef] [PubMed]
  32. U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
    [CrossRef] [PubMed]
  33. Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999).
    [CrossRef] [PubMed]
  34. C. Williams, R. Hess, “Relationship between facilitation at threshold and suprathreshold contour integration,” J. Opt. Soc. Am. A 15, 2046–2051 (1998).
    [CrossRef]
  35. E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).
  36. R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).
  37. D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
    [CrossRef] [PubMed]
  38. M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
    [CrossRef] [PubMed]
  39. B. Zenger, C. Koch, “Divisive and subtractive mask effects: linking psychophysics and biophysics,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, V. Tresp, eds. (MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 915–921.
  40. D. Sagi, S. Hochstein, “Lateral inhibition between spatially adjacent spatial frequency channels?” Percept. Psychophys. 37, 315–322 (1985).
    [CrossRef] [PubMed]
  41. C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
    [CrossRef]
  42. M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
    [CrossRef] [PubMed]
  43. R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
    [CrossRef] [PubMed]
  44. S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
    [CrossRef] [PubMed]
  45. M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
    [CrossRef] [PubMed]
  46. L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
    [CrossRef]
  47. B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).
  48. J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997).
    [CrossRef]
  49. U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
    [CrossRef] [PubMed]
  50. L. Itti, C. Koch, J. Braun, “Revisiting spatial vision: towards a unifying model,” J. Opt. Soc. Am. A 17, 1899–1917 (2000).
    [CrossRef]
  51. H. B. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), Chap. 32, pp. 363–375.
  52. F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
    [CrossRef] [PubMed]

2000 (7)

J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef]

C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).

R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).

S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

L. Itti, C. Koch, J. Braun, “Revisiting spatial vision: towards a unifying model,” J. Opt. Soc. Am. A 17, 1899–1917 (2000).
[CrossRef]

1999 (7)

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999).
[CrossRef] [PubMed]

U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
[CrossRef] [PubMed]

C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999).
[CrossRef]

L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

B. Dresp, “Dynamic characteristics of spatial mechanisms coding contour structures,” Spatial Vision 12, 129–142 (1999).
[CrossRef] [PubMed]

J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

1998 (6)

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

C. Williams, R. Hess, “Relationship between facilitation at threshold and suprathreshold contour integration,” J. Opt. Soc. Am. A 15, 2046–2051 (1998).
[CrossRef]

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

1997 (3)

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997).
[CrossRef]

J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997).
[CrossRef] [PubMed]

Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
[CrossRef]

1996 (6)

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
[CrossRef] [PubMed]

M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

1994 (4)

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
[CrossRef] [PubMed]

J. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
[CrossRef]

U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).
[CrossRef] [PubMed]

1993 (1)

U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

1992 (1)

D. Heeger, “Normalization of cell in cat striate cortex,” J. Neurosci. 9, 181–197 (1992).

1991 (1)

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991).
[CrossRef]

1989 (1)

C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

1987 (2)

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

1985 (2)

1982 (1)

A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
[CrossRef]

1971 (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

1969 (1)

C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

1968 (1)

F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

1963 (1)

D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).

1946 (1)

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).

Adini, Y.

Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
[CrossRef]

Baddeley, R. J.

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Barlow, H.

A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
[CrossRef]

Barlow, H. B.

H. B. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), Chap. 32, pp. 363–375.

Blackmore, C.

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Blakemore, C.

C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Bonds, A.

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

Bonneh, Y.

Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999).
[CrossRef] [PubMed]

Braun, J.

Campbell, F.

C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Cannon, M.

M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

Carandini, M.

M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
[CrossRef] [PubMed]

Chen, C.

C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999).
[CrossRef]

J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997).
[CrossRef] [PubMed]

Chubb, C.

C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Daugman, J. G.

DeValois, K. K.

R. L. DeValois, K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1990).

DeValois, R. L.

R. L. DeValois, K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1990).

Dresp, B.

B. Dresp, “Dynamic characteristics of spatial mechanisms coding contour structures,” Spatial Vision 12, 129–142 (1999).
[CrossRef] [PubMed]

Driver, J.

E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).

Foley, J.

J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997).
[CrossRef] [PubMed]

J. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
[CrossRef]

Freeman, E.

E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).

Freeman, T.

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Fullenkamp, S.

M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).

Gilbert, D. C.

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

Graham, N.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

Grossberg, S.

S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

Hammett, S. T.

R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

Harrad, R.

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Hawken, M.

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Heeger, D.

M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
[CrossRef] [PubMed]

D. Heeger, “Normalization of cell in cat striate cortex,” J. Neurosci. 9, 181–197 (1992).

Heeger, D. J.

D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
[CrossRef] [PubMed]

Hess, R.

Hochstein, S.

D. Sagi, S. Hochstein, “Lateral inhibition between spatially adjacent spatial frequency channels?” Percept. Psychophys. 37, 315–322 (1985).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).

Ito, M.

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

Itti, L.

Julesz, B.

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

Kabara, J.

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

Kapadia, M. K.

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

Kasamatsu, T.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Kim, D.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Koch, C.

L. Itti, C. Koch, J. Braun, “Revisiting spatial vision: towards a unifying model,” J. Opt. Soc. Am. A 17, 1899–1917 (2000).
[CrossRef]

B. Zenger, C. Koch, “Divisive and subtractive mask effects: linking psychophysics and biophysics,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, V. Tresp, eds. (MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 915–921.

Levi, D.

C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Levitt, J. B.

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997).
[CrossRef]

Lund, J. S.

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997).
[CrossRef]

Mizobe, K.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Morgan, M.

J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef]

J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

Movshon, J. A.

D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
[CrossRef] [PubMed]

Niebur, E.

M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Norcia, A. M.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

Nugent, A.

R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).

Oehler, R.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

Olzak, L.

L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

Peli, E.

R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).

Pettet, M. W.

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Polat, U.

U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
[CrossRef] [PubMed]

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Raizada, R.

S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

Ransom-Hogg, A.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

Rao, S.

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Ringach, D.

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Robson, J.

A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
[CrossRef]

F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

Roig, B.

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

Ross, J.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991).
[CrossRef]

Sagi, D.

E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).

Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999).
[CrossRef] [PubMed]

Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
[CrossRef]

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

D. Sagi, S. Hochstein, “Lateral inhibition between spatially adjacent spatial frequency channels?” Percept. Psychophys. 37, 315–322 (1985).
[CrossRef] [PubMed]

Sceniak, M.

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Sengpiel, F.

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Shapley, R.

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Siapas, A.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

Simoncelli, E. P.

D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
[CrossRef] [PubMed]

Snider, R.

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

Snowden, R. J.

R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

Solomon, J.

J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef]

J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Somers, D.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Speed, H. D.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991).
[CrossRef]

Sperling, G.

C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Spillmann, L.

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

Stemmler, M.

M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Sur, M.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Sutter, A.

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

Thomas, J.

L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

Todorov, E.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

Toth, L.

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

Toth, L. J.

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Tsodyks, M.

Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
[CrossRef]

Tyler, C.

U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
[CrossRef] [PubMed]

C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999).
[CrossRef]

Usher, M.

M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Watson, A.

J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
[CrossRef]

Westheimer, G.

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).

Williams, C.

Woods, R.

R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).

Yu, C.

C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

Zenger, B.

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

B. Zenger, C. Koch, “Divisive and subtractive mask effects: linking psychophysics and biophysics,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, V. Tresp, eds. (MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 915–921.

Cerebral Cortex (1)

D. Somers, E. Todorov, A. Siapas, L. Toth, D. Kim, M. Sur, “A local circuit approach to understanding integration of long-range inputs in primary visual cortex,” Cerebral Cortex 8, 204–217 (1998).
[CrossRef] [PubMed]

Hum. Neurobiol. (1)

L. Spillmann, A. Ransom-Hogg, R. Oehler, “A comparison of perceptive and receptive fields in man and monkey,” Hum. Neurobiol. 6, 51–62 (1987).
[PubMed]

Invest. Ophthalmol. Visual Sci. (Suppl.) (1)

B. Roig, J. Kabara, R. Snider, A. Bonds, “Non-uniform influence from stimuli outside the classical receptive field on gain control of cat visual cortical neurons,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S2198 (1996).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

R. Woods, A. Nugent, E. Peli, “Bandwidth affects visual lateral interactions,” Invest. Ophthalmol. Visual Sci. Suppl. 14, S803 (2000).

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Inst. Electr. Eng. (London) (1)

D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. (London) 93, 429–457 (1946).

J. Neurosci. (1)

D. Heeger, “Normalization of cell in cat striate cortex,” J. Neurosci. 9, 181–197 (1992).

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (3)

D. H. Hubel, T. N. Wiesel, “Shape and arrangement of columns in the cat’s striate cortex,” J. Physiol. (London) 165, 559–568 (1963).

F. Campbell, J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).

C. Blakemore, F. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).

Nat. Neurosci. (2)

C. Yu, D. Levi, “Surround modulation in human vision unmasked by masking experiments,” Nat. Neurosci. 3, 724–728 (2000).
[CrossRef] [PubMed]

M. Sceniak, D. Ringach, M. Hawken, R. Shapley, “Contrast effect on spatial summation by macaque V1 neurons,” Nat. Neurosci. 2, 733–739 (1999).
[CrossRef] [PubMed]

Nature (2)

A. Watson, H. Barlow, J. Robson, “What does the eye see best?” Nature 302, 419–422 (1982).
[CrossRef]

U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
[CrossRef] [PubMed]

Nature (London) (1)

J. B. Levitt, J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature (London) 387, 73–76 (1997).
[CrossRef]

Neuron (1)

M. K. Kapadia, M. Ito, D. C. Gilbert, G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

D. Sagi, S. Hochstein, “Lateral inhibition between spatially adjacent spatial frequency channels?” Percept. Psychophys. 37, 315–322 (1985).
[CrossRef] [PubMed]

Perception (1)

E. Freeman, D. Sagi, J. Driver, “Gabor contrast sensitivity depends on task relevance of collinear flankers,” Perception 29 (Suppl.), 62 (2000).

Proc. Natl. Acad. Sci. USA (5)

C. Chubb, G. Sperling, J. Solomon, “Texure interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

L. J. Toth, S. Rao, D. Kim, D. Somers, M. Sur, “Subthreshold facilitation and suppresion in primary visual cortex revealed by intrinsic signal imaging,” Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).
[CrossRef]

Y. Adini, D. Sagi, M. Tsodyks, “Excitatory–inhibitory network in the visual cortex, psychophysical evidence,” Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).
[CrossRef]

D. J. Heeger, E. P. Simoncelli, J. A. Movshon, “Computational models of cortical visual processing,” Proc. Natl. Acad. Sci. USA 93, 623–627 (1996).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Spatial interactions in human vision: from near to far via experience-dependent cascades of connections,” Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).
[CrossRef] [PubMed]

Proc. R. Soc. London (1)

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London 246, 61–69 (1991).
[CrossRef]

Science (2)

M. Stemmler, M. Usher, E. Niebur, “Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

M. Carandini, D. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
[CrossRef] [PubMed]

Spatial Vision (3)

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

B. Dresp, “Dynamic characteristics of spatial mechanisms coding contour structures,” Spatial Vision 12, 129–142 (1999).
[CrossRef] [PubMed]

C. Chen, C. Tyler, “Spatial pattern summation is phase-insensitive in the fovea but not in the perphery,” Spatial Vision 12, 267–285 (1999).
[CrossRef]

Vision Res. (16)

L. Olzak, J. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

N. Graham, A. Sutter, “Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision,” Vision Res. 40, 2737–2761 (2000).
[CrossRef] [PubMed]

U. Polat, C. Tyler, “What pattern the eye sees best,” Vision Res. 39, 887–895 (1999).
[CrossRef] [PubMed]

J. Solomon, M. Morgan, “Facilitation from collinear flanks is canceled by noncollinear flanks,” Vision Res. 40, 279–286 (2000).
[CrossRef]

U. Polat, D. Sagi, “Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory non-linear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

J. Solomon, A. Watson, M. Morgan, “Transducer model produces facilitation from opposite-sign flanks,” Vision Res. 39, 987–992 (1999).
[CrossRef] [PubMed]

M. Cannon, S. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

R. J. Snowden, S. T. Hammett, “The effect of surround contrast on contrast thresholds, perceived contrast and contrast discrimination,” Vision Res. 38, 1935–1945 (1998).
[CrossRef] [PubMed]

S. Grossberg, R. Raizada, “Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex,” Vision Res. 40, 1413–1432 (2000).
[CrossRef] [PubMed]

J. Foley, C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model,” Vision Res. 37, 2779–2788 (1997).
[CrossRef] [PubMed]

U. Polat, A. M. Norcia, “Neurophysiological evidence for contrast dependent long range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
[CrossRef] [PubMed]

Y. Bonneh, D. Sagi, “Configuration saliency revealed in short duration binocular rivalry,” Vision Res. 39, 271–281 (1999).
[CrossRef] [PubMed]

F. Sengpiel, R. J. Baddeley, T. Freeman, R. Harrad, C. Blackmore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998).
[CrossRef] [PubMed]

Other (3)

H. B. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), Chap. 32, pp. 363–375.

B. Zenger, C. Koch, “Divisive and subtractive mask effects: linking psychophysics and biophysics,” in Advances in Neural Information Processing Systems, T. K. Leen, T. G. Dietterich, V. Tresp, eds. (MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 915–921.

R. L. DeValois, K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Examples of stimuli used in our experiments. (a) Different experimental conditions used in Experiment 1 (the collinear configuration), in which the thresholds for contrast discrimination (CD) were measured with and without high-contrast lateral flankers (LF). (b) Different experimental conditions used in the chain experiment (the parallel configurations). N is the number of the masks in the chain: 1 pedestal at the center of the chain and N-1 lateral flankers.

Fig. 2
Fig. 2

TvC curves that were obtained with (dotted curves), and without (solid curves) two flankers, for (a) the parallel and (b) the collinear configurations. Each datum point is the average of 3–5 threshold estimates that were taken on different days. Both the discrimination thresholds and the pedestal contrasts were normalized to the observer’s average threshold for detection. The flankers acted to decrease the threshold for contrast discrimination and to increase greatly the threshold for discrimination of a range of intermediate target contrasts. High-contrast parallel flankers enhanced the discrimination with high-contrast pedestals. Note that the thresholds for discriminating a contrast C, [Cth(C)], were normalized by the threshold for detection Cth(0). Log[Cth(C)/Cth(0)]=0  Cth(C)=Cth(0); L.U. stands for log unit.

Fig. 3
Fig. 3

Average (across N=3 subjects) TvC curves that were obtained with and without two lateral flankers for (a) the parallel and (b) the collinear configurations. Assuming that the flankers contributed the same constant input (ΔC) to each pedestal contrast (Cp), we replotted the thresholds for contrast discrimination obtained without the flankers versus the Cp+ΔC and obtained leftward-shifted TvC curves. The thresholds and the pedestal contrasts were normalized by the average threshold for detection (Cth=4.6% with the parallel configuration; Cth=5.3% with the collinear configuration). To fit the thresholds measured with the flankers for low-contrast pedestals, we chose ΔC to be 1.5Cth. As can be seen in the graphs, the constant spatial-summation assumption (shifted curves) fails in predicting the psychophysical data (CD+flanks curves).

Fig. 4
Fig. 4

Thresholds for contrast discrimination for a GS target masked by a pedestal of contrast Cp in the context of 0, 2, 4, and 8 lateral flankers. The thresholds and the pedestal contrasts were normalized by the threshold for detection (Cth that was measured separately for each observer). Short chains of flankers increased the thresholds for contrast discrimination for target contrasts less than the flankers’ contrast. (a) With the parallel configuration, doubling the number of the flankers reversed this effect (observers YS and MR). (b) With the collinear configuration, the observers (ZE, OH, AS, and YO) differed in the size of the reversing effect. At the range of high-contrast pedestals, the suppressive effect found with short chains turned into a facilitative effect, with longer chains. Note that for observer OH the suppressive effect of the flankers occurred with four flankers and turned into facilitation with eight flankers. The influence of the configuration and practice on effects similar to this have been discussed elsewhere.5

Fig. 5
Fig. 5

Chain effect. Dependence of the contrast-discrimination threshold on the number of the masks in the chain for observers EC, VR, AR, GG, GL, and IB. The number of masks reflects the total number of the pedestal and the lateral flankers in the chain. The threshold elevation was computed relative to the threshold for detecting an isolated target. Each datum point is the average of three measurements. The pedestal and the flankers had the same contrast, either low (near the threshold for detection, of each observer) or high (near six times Cth). All observers show a similar nonmonotonic dependence of the discrimination threshold on the number of the masks. For high-contrast chains, the threshold first increases and then decreases and increases again. For low-contrast chains, the effect was with a reverse phase. The difference between the maximal and the minimal thresholds for CD was between 0.2 and 0.3 log unit.

Metrics