Abstract

We analyzed how the visual response to orientation modulation in texture patterns varied as a function of the magnitude of orientation contrast. Using a contrast-discrimination technique, we measured threshold increments of orientation contrast (the orientation contrast required for discriminating between two textures) at various pedestal-orientation contrasts. The orientation-contrast-response function estimated for a step-orientation contrast, which produces a vivid percept of surface boundaries, saturated at approximately 30° (experiment 1). The saturation was still evident even when the strength of the step-orientation contrast was reduced by orientation noise (experiment 2), but no strong saturation was found for textures that did not produce a vivid percept of surface boundaries (experiment 3). These results are consistent with the notion that orientation-based texture segregation involves the generation of a neural representation of the surface boundary whose strength is nearly independent of the magnitude of orientation contrast.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Beck, “Effect of orientation and of shape similarity on perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
    [CrossRef]
  2. B. Julesz, “Textons: the elements of texture perception, and their interactions,” Nature 290, 91–97 (1981).
    [CrossRef] [PubMed]
  3. J. P. Frisby, Seeing (Oxford U. Press, Oxford, UK, 1979).
  4. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1982).
  5. S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
    [CrossRef] [PubMed]
  6. N. Graham, “Complex channels, early local non-linearities, and normalization in texture segregation,” in M. S. Landy, J. A. Movshon, eds., Computational Models of Visual Processing (MIT Press, Cambridge, Mass., 1994).
  7. J. Malik, P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
    [CrossRef] [PubMed]
  8. J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature 333, 363–364 (1988).
    [CrossRef] [PubMed]
  9. M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
    [CrossRef] [PubMed]
  10. B. S. Rubenstein, D. Sagi, “Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries,” J. Opt. Soc. Am. A 7, 1632–1643 (1990).
    [CrossRef] [PubMed]
  11. B. S. Rubenstein, D. Sagi, “Effects of foreground scale in texture discrimination tasks: performance is size, shape, and content specific,” Spatial Vision 7, 293–310 (1993).
    [CrossRef] [PubMed]
  12. F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
    [CrossRef] [PubMed]
  13. F. A. Kingdom, D. R. Keeble, “A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures,” Vision Res. 36, 409–420 (1996).
    [CrossRef] [PubMed]
  14. R. Gurnsey, D. S. Laundry, “Texture discrimination with and without abrupt texture gradients,” Can. J. Psychol. 46, 306–332 (1992).
    [CrossRef] [PubMed]
  15. H. C. Nothdurft, “Orientation sensitivity and texture segmentation in patterns with different line orientation,” Vision Res. 25, 551–560 (1985).
    [CrossRef] [PubMed]
  16. H. C. Nothdurft, “Texture segmentation and pop-out from orientation contrast,” Vision Res. 31, 1073–1078 (1991).
    [CrossRef] [PubMed]
  17. D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
    [CrossRef] [PubMed]
  18. D. Sagi, “Detection of an orientation singularity in Gabor textures: effect of signal density and spatial-frequency,” Vision Res. 30, 1377–1388 (1990).
    [CrossRef] [PubMed]
  19. S. S. Wolfson, M. S. Landy, “Examining edge- and region-based texture analysis mechanisms,” Vision Res. 38, 439–446 (1998).
    [CrossRef] [PubMed]
  20. A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
    [CrossRef] [PubMed]
  21. A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
    [CrossRef] [PubMed]
  22. H. C. Nothdurft, “Salience from feature contrast: temporal properties of saliency mechanisms,” Vision Res. 40, 2421–2435 (2000).
    [CrossRef] [PubMed]
  23. I. Motoyoshi, S. Nishida, “Temporal resolution of orientation-based segregation,” Vision Res. 41, 2089–2105 (2001).
    [CrossRef] [PubMed]
  24. F. W. Campbell, J. G. Robson, “On the application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
    [PubMed]
  25. H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
    [CrossRef] [PubMed]
  26. D. Regan, “Orientation discrimination for bars defined by orientation texture,” Perception 24, 1131–1138 (1995).
    [CrossRef] [PubMed]
  27. R. Gray, D. Regan, “Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture,” Vision Res. 38, 2601–2617 (1998).
    [CrossRef]
  28. H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
    [CrossRef] [PubMed]
  29. H. C. Nothdurft, “Salience from feature contrast: additivity across dimensions,” Vision Res. 40, 1183–1201 (2000).
    [CrossRef] [PubMed]
  30. J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
    [CrossRef] [PubMed]
  31. G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  32. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
    [CrossRef]
  33. J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Philos. Trans. R. Soc. London, Ser. B 246, 61–69 (1991).
    [CrossRef]
  34. H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
    [CrossRef] [PubMed]
  35. The randomization of the mean orientation was expected to increase the trial-to-trial variation in the subjects’ discrimination performance because the sensitivity to orientation contrasts is known to depend profoundly on the mean orientation of the elements in the texture (see Refs. 60and 61below). This manipulation, however, was necessary to prevent subjects from using absolute orientation as a discrimination cue, and as described below, the errors in the threshold data possibly due to this factor were not large enough to hide the general tendencies of the results.
  36. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Opt. Soc. Am. 49, 467–477 (1971).
  37. We conducted experiment 1 first, experiment 3 second, and experiment 2 last, so the poor discrimination performance at high pedestal-orientation contrasts in experiment 2 (with noise) is not likely due to a lack of training.
  38. I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
    [PubMed]
  39. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
    [CrossRef]
  40. M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
    [CrossRef] [PubMed]
  41. S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997).
    [CrossRef]
  42. S. C. Dakin, “Orientation variance as a quantifier of structure in texture,” Spatial Vision 12, 1–30 (1999).
    [CrossRef] [PubMed]
  43. K. Nakayama, S. Shimojo, “Toward a neural understanding of visual surface representation,” Cold Spring Harbor Symp. Quant. Biol. 15, 911–924 (1990).
    [CrossRef]
  44. Z. J. He, K. Nakayama, “Perceiving textures: beyond filtering,” Vision Res. 34, 151–162 (1994).
    [CrossRef] [PubMed]
  45. J. M. Wolfe, “‘Effortless’ texture segmentation and ‘parallel’ visual search are not the same thing,” Vision Res. 32, 757–763 (1992).
    [CrossRef] [PubMed]
  46. H. R. Wilson, “Discrimination of contour curvature: data and theory,” J. Opt. Soc. Am. A 2, 1191–1199 (1985).
    [CrossRef] [PubMed]
  47. H. R. Wilson, W. A. Richards, “Mechanisms of contour curvature discrimination,” J. Opt. Soc. Am. A 6, 106–115 (1989).
    [CrossRef] [PubMed]
  48. D. Kramer, M. Fahle, “A simple mechanism for detecting low curvatures,” Vision Res. 36, 1411–1419 (1996).
    [CrossRef] [PubMed]
  49. D. W. Heeley, H. M. Buchanan-Smith, “Mechanisms specialized for the perception of image geometry,” Vision Res. 36, 3607–3627 (1996).
    [CrossRef] [PubMed]
  50. H. P. Snippe, J. J. Koenderink, “Discrimination of geometric angle in the fronto-parallel plane,” Spatial Vision 8, 309–328 (1994).
    [CrossRef] [PubMed]
  51. S. Chen, D. M. Levi, “Angle judgement: is the whole the sum of its parts?” Vision Res. 36, 1721–1235 (1996).
    [CrossRef] [PubMed]
  52. D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
    [CrossRef] [PubMed]
  53. S. W. Zucker, L. Iverson, “From orientation selection to optical flow,” Comput. Vision Graph. Image Process. 37, 196–220 (1987).
    [CrossRef]
  54. Y. Hel Or, S. W. Zucker, “Texture fields and texture flows: sensitivity to differences,” Spatial Vision 4, 131–139 (1989).
    [CrossRef]
  55. D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
    [CrossRef]
  56. D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
    [CrossRef] [PubMed]
  57. F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
    [CrossRef]
  58. R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
    [CrossRef]
  59. D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
    [CrossRef] [PubMed]
  60. D. H. Foster, S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733–738 (1995).
    [CrossRef] [PubMed]
  61. T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
    [CrossRef] [PubMed]

2001 (1)

I. Motoyoshi, S. Nishida, “Temporal resolution of orientation-based segregation,” Vision Res. 41, 2089–2105 (2001).
[CrossRef] [PubMed]

2000 (2)

H. C. Nothdurft, “Salience from feature contrast: temporal properties of saliency mechanisms,” Vision Res. 40, 2421–2435 (2000).
[CrossRef] [PubMed]

H. C. Nothdurft, “Salience from feature contrast: additivity across dimensions,” Vision Res. 40, 1183–1201 (2000).
[CrossRef] [PubMed]

1999 (3)

S. C. Dakin, “Orientation variance as a quantifier of structure in texture,” Spatial Vision 12, 1–30 (1999).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

1998 (5)

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

R. Gray, D. Regan, “Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture,” Vision Res. 38, 2601–2617 (1998).
[CrossRef]

S. S. Wolfson, M. S. Landy, “Examining edge- and region-based texture analysis mechanisms,” Vision Res. 38, 439–446 (1998).
[CrossRef] [PubMed]

M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
[CrossRef] [PubMed]

1997 (2)

S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997).
[CrossRef]

D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
[CrossRef]

1996 (5)

S. Chen, D. M. Levi, “Angle judgement: is the whole the sum of its parts?” Vision Res. 36, 1721–1235 (1996).
[CrossRef] [PubMed]

D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
[CrossRef] [PubMed]

D. Kramer, M. Fahle, “A simple mechanism for detecting low curvatures,” Vision Res. 36, 1411–1419 (1996).
[CrossRef] [PubMed]

D. W. Heeley, H. M. Buchanan-Smith, “Mechanisms specialized for the perception of image geometry,” Vision Res. 36, 3607–3627 (1996).
[CrossRef] [PubMed]

F. A. Kingdom, D. R. Keeble, “A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures,” Vision Res. 36, 409–420 (1996).
[CrossRef] [PubMed]

1995 (5)

F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

D. Regan, “Orientation discrimination for bars defined by orientation texture,” Perception 24, 1131–1138 (1995).
[CrossRef] [PubMed]

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

D. H. Foster, S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733–738 (1995).
[CrossRef] [PubMed]

1994 (5)

T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
[CrossRef] [PubMed]

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
[CrossRef]

H. P. Snippe, J. J. Koenderink, “Discrimination of geometric angle in the fronto-parallel plane,” Spatial Vision 8, 309–328 (1994).
[CrossRef] [PubMed]

Z. J. He, K. Nakayama, “Perceiving textures: beyond filtering,” Vision Res. 34, 151–162 (1994).
[CrossRef] [PubMed]

1993 (3)

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

B. S. Rubenstein, D. Sagi, “Effects of foreground scale in texture discrimination tasks: performance is size, shape, and content specific,” Spatial Vision 7, 293–310 (1993).
[CrossRef] [PubMed]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

1992 (3)

R. Gurnsey, D. S. Laundry, “Texture discrimination with and without abrupt texture gradients,” Can. J. Psychol. 46, 306–332 (1992).
[CrossRef] [PubMed]

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

J. M. Wolfe, “‘Effortless’ texture segmentation and ‘parallel’ visual search are not the same thing,” Vision Res. 32, 757–763 (1992).
[CrossRef] [PubMed]

1991 (3)

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Philos. Trans. R. Soc. London, Ser. B 246, 61–69 (1991).
[CrossRef]

H. C. Nothdurft, “Texture segmentation and pop-out from orientation contrast,” Vision Res. 31, 1073–1078 (1991).
[CrossRef] [PubMed]

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

1990 (4)

J. Malik, P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
[CrossRef] [PubMed]

B. S. Rubenstein, D. Sagi, “Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries,” J. Opt. Soc. Am. A 7, 1632–1643 (1990).
[CrossRef] [PubMed]

D. Sagi, “Detection of an orientation singularity in Gabor textures: effect of signal density and spatial-frequency,” Vision Res. 30, 1377–1388 (1990).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, “Toward a neural understanding of visual surface representation,” Cold Spring Harbor Symp. Quant. Biol. 15, 911–924 (1990).
[CrossRef]

1989 (2)

H. R. Wilson, W. A. Richards, “Mechanisms of contour curvature discrimination,” J. Opt. Soc. Am. A 6, 106–115 (1989).
[CrossRef] [PubMed]

Y. Hel Or, S. W. Zucker, “Texture fields and texture flows: sensitivity to differences,” Spatial Vision 4, 131–139 (1989).
[CrossRef]

1988 (1)

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature 333, 363–364 (1988).
[CrossRef] [PubMed]

1987 (2)

S. W. Zucker, L. Iverson, “From orientation selection to optical flow,” Comput. Vision Graph. Image Process. 37, 196–220 (1987).
[CrossRef]

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

1985 (3)

H. C. Nothdurft, “Orientation sensitivity and texture segmentation in patterns with different line orientation,” Vision Res. 25, 551–560 (1985).
[CrossRef] [PubMed]

I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
[PubMed]

H. R. Wilson, “Discrimination of contour curvature: data and theory,” J. Opt. Soc. Am. A 2, 1191–1199 (1985).
[CrossRef] [PubMed]

1981 (1)

B. Julesz, “Textons: the elements of texture perception, and their interactions,” Nature 290, 91–97 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

1974 (1)

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

1971 (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Opt. Soc. Am. 49, 467–477 (1971).

1968 (1)

F. W. Campbell, J. G. Robson, “On the application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
[PubMed]

1966 (1)

J. Beck, “Effect of orientation and of shape similarity on perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

Adelson, E. H.

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature 333, 363–364 (1988).
[CrossRef] [PubMed]

Bach, M.

T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
[CrossRef] [PubMed]

Beck, J.

J. Beck, “Effect of orientation and of shape similarity on perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

Bergen, J. R.

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature 333, 363–364 (1988).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

Buchanan-Smith, H. M.

D. W. Heeley, H. M. Buchanan-Smith, “Mechanisms specialized for the perception of image geometry,” Vision Res. 36, 3607–3627 (1996).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, J. G. Robson, “On the application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
[PubMed]

Castet, E.

M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
[CrossRef] [PubMed]

Chen, S.

S. Chen, D. M. Levi, “Angle judgement: is the whole the sum of its parts?” Vision Res. 36, 1721–1235 (1996).
[CrossRef] [PubMed]

Dakin, S. C.

S. C. Dakin, “Orientation variance as a quantifier of structure in texture,” Spatial Vision 12, 1–30 (1999).
[CrossRef] [PubMed]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997).
[CrossRef]

Fahle, M.

D. Kramer, M. Fahle, “A simple mechanism for detecting low curvatures,” Vision Res. 36, 1411–1419 (1996).
[CrossRef] [PubMed]

Foley, J. M.

Foster, D. H.

D. H. Foster, S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733–738 (1995).
[CrossRef] [PubMed]

Freeman, R. D.

I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
[PubMed]

Frisby, J. P.

J. P. Frisby, Seeing (Oxford U. Press, Oxford, UK, 1979).

Graham, N.

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

N. Graham, “Complex channels, early local non-linearities, and normalization in texture segregation,” in M. S. Landy, J. A. Movshon, eds., Computational Models of Visual Processing (MIT Press, Cambridge, Mass., 1994).

Gray, R.

R. Gray, D. Regan, “Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture,” Vision Res. 38, 2601–2617 (1998).
[CrossRef]

D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
[CrossRef] [PubMed]

Grossberg, S.

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

Gurnsey, R.

R. Gurnsey, D. S. Laundry, “Texture discrimination with and without abrupt texture gradients,” Can. J. Psychol. 46, 306–332 (1992).
[CrossRef] [PubMed]

Habak, C.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

Hamstra, S. J.

D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
[CrossRef] [PubMed]

He, Z. J.

Z. J. He, K. Nakayama, “Perceiving textures: beyond filtering,” Vision Res. 34, 151–162 (1994).
[CrossRef] [PubMed]

Heeger, D. J.

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

Heeley, D. W.

D. W. Heeley, H. M. Buchanan-Smith, “Mechanisms specialized for the perception of image geometry,” Vision Res. 36, 3607–3627 (1996).
[CrossRef] [PubMed]

Hel Or, Y.

Y. Hel Or, S. W. Zucker, “Texture fields and texture flows: sensitivity to differences,” Spatial Vision 4, 131–139 (1989).
[CrossRef]

Hess, R. F.

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

Humanski, R.

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Hwang, D.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

Iverson, L.

S. W. Zucker, L. Iverson, “From orientation selection to optical flow,” Comput. Vision Graph. Image Process. 37, 196–220 (1987).
[CrossRef]

Julesz, B.

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

B. Julesz, “Textons: the elements of texture perception, and their interactions,” Nature 290, 91–97 (1981).
[CrossRef] [PubMed]

Keeble, D.

F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Keeble, D. R.

D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
[CrossRef]

F. A. Kingdom, D. R. Keeble, “A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures,” Vision Res. 36, 409–420 (1996).
[CrossRef] [PubMed]

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

Kingdom, F. A.

D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
[CrossRef]

F. A. Kingdom, D. R. Keeble, “A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures,” Vision Res. 36, 409–420 (1996).
[CrossRef] [PubMed]

F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

Koenderink, J. J.

H. P. Snippe, J. J. Koenderink, “Discrimination of geometric angle in the fronto-parallel plane,” Spatial Vision 8, 309–328 (1994).
[CrossRef] [PubMed]

Kramer, D.

D. Kramer, M. Fahle, “A simple mechanism for detecting low curvatures,” Vision Res. 36, 1411–1419 (1996).
[CrossRef] [PubMed]

Lagreze, W. D.

T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
[CrossRef] [PubMed]

Landy, M. S.

S. S. Wolfson, M. S. Landy, “Examining edge- and region-based texture analysis mechanisms,” Vision Res. 38, 439–446 (1998).
[CrossRef] [PubMed]

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

Laundry, D. S.

R. Gurnsey, D. S. Laundry, “Texture discrimination with and without abrupt texture gradients,” Can. J. Psychol. 46, 306–332 (1992).
[CrossRef] [PubMed]

Legge, G. E.

Levi, D. M.

S. Chen, D. M. Levi, “Angle judgement: is the whole the sum of its parts?” Vision Res. 36, 1721–1235 (1996).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Opt. Soc. Am. 49, 467–477 (1971).

Malik, J.

Marr, D.

D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1982).

Meigen, T.

T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
[CrossRef] [PubMed]

Morgan, M. J.

M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
[CrossRef] [PubMed]

D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
[CrossRef]

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

Motoyoshi, I.

I. Motoyoshi, S. Nishida, “Temporal resolution of orientation-based segregation,” Vision Res. 41, 2089–2105 (2001).
[CrossRef] [PubMed]

Moulden, B.

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Nachmias, J.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Nakayama, K.

Z. J. He, K. Nakayama, “Perceiving textures: beyond filtering,” Vision Res. 34, 151–162 (1994).
[CrossRef] [PubMed]

K. Nakayama, S. Shimojo, “Toward a neural understanding of visual surface representation,” Cold Spring Harbor Symp. Quant. Biol. 15, 911–924 (1990).
[CrossRef]

Nishida, S.

I. Motoyoshi, S. Nishida, “Temporal resolution of orientation-based segregation,” Vision Res. 41, 2089–2105 (2001).
[CrossRef] [PubMed]

Nothdurft, H. C.

H. C. Nothdurft, “Salience from feature contrast: temporal properties of saliency mechanisms,” Vision Res. 40, 2421–2435 (2000).
[CrossRef] [PubMed]

H. C. Nothdurft, “Salience from feature contrast: additivity across dimensions,” Vision Res. 40, 1183–1201 (2000).
[CrossRef] [PubMed]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

H. C. Nothdurft, “Texture segmentation and pop-out from orientation contrast,” Vision Res. 31, 1073–1078 (1991).
[CrossRef] [PubMed]

H. C. Nothdurft, “Orientation sensitivity and texture segmentation in patterns with different line orientation,” Vision Res. 25, 551–560 (1985).
[CrossRef] [PubMed]

Ohzawa, I.

I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
[PubMed]

Perona, P.

Ramachandran, V. S.

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

Regan, D.

R. Gray, D. Regan, “Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture,” Vision Res. 38, 2601–2617 (1998).
[CrossRef]

D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
[CrossRef] [PubMed]

D. Regan, “Orientation discrimination for bars defined by orientation texture,” Perception 24, 1131–1138 (1995).
[CrossRef] [PubMed]

Richards, W. A.

Robson, J. G.

F. W. Campbell, J. G. Robson, “On the application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
[PubMed]

Rogers-Ramachandran, D. C.

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

Ross, J.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Philos. Trans. R. Soc. London, Ser. B 246, 61–69 (1991).
[CrossRef]

Rubenstein, B. S.

B. S. Rubenstein, D. Sagi, “Effects of foreground scale in texture discrimination tasks: performance is size, shape, and content specific,” Spatial Vision 7, 293–310 (1993).
[CrossRef] [PubMed]

B. S. Rubenstein, D. Sagi, “Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries,” J. Opt. Soc. Am. A 7, 1632–1643 (1990).
[CrossRef] [PubMed]

Sagi, D.

B. S. Rubenstein, D. Sagi, “Effects of foreground scale in texture discrimination tasks: performance is size, shape, and content specific,” Spatial Vision 7, 293–310 (1993).
[CrossRef] [PubMed]

B. S. Rubenstein, D. Sagi, “Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries,” J. Opt. Soc. Am. A 7, 1632–1643 (1990).
[CrossRef] [PubMed]

D. Sagi, “Detection of an orientation singularity in Gabor textures: effect of signal density and spatial-frequency,” Vision Res. 30, 1377–1388 (1990).
[CrossRef] [PubMed]

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Sclar, G.

I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
[PubMed]

Shimojo, S.

K. Nakayama, S. Shimojo, “Toward a neural understanding of visual surface representation,” Cold Spring Harbor Symp. Quant. Biol. 15, 911–924 (1990).
[CrossRef]

Snippe, H. P.

H. P. Snippe, J. J. Koenderink, “Discrimination of geometric angle in the fronto-parallel plane,” Spatial Vision 8, 309–328 (1994).
[CrossRef] [PubMed]

Speed, H. D.

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Philos. Trans. R. Soc. London, Ser. B 246, 61–69 (1991).
[CrossRef]

Sutter, A.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

Wang, Y. Z.

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

Ward, R. M.

M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
[CrossRef] [PubMed]

Watt, R. J.

S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997).
[CrossRef]

Westland, S.

D. H. Foster, S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733–738 (1995).
[CrossRef] [PubMed]

Wilkinson, F.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

Wilson, H. R.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

H. R. Wilson, W. A. Richards, “Mechanisms of contour curvature discrimination,” J. Opt. Soc. Am. A 6, 106–115 (1989).
[CrossRef] [PubMed]

H. R. Wilson, “Discrimination of contour curvature: data and theory,” J. Opt. Soc. Am. A 2, 1191–1199 (1985).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

Wolfe, J. M.

J. M. Wolfe, “‘Effortless’ texture segmentation and ‘parallel’ visual search are not the same thing,” Vision Res. 32, 757–763 (1992).
[CrossRef] [PubMed]

Wolfson, S. S.

S. S. Wolfson, M. S. Landy, “Examining edge- and region-based texture analysis mechanisms,” Vision Res. 38, 439–446 (1998).
[CrossRef] [PubMed]

Zucker, S. W.

Y. Hel Or, S. W. Zucker, “Texture fields and texture flows: sensitivity to differences,” Spatial Vision 4, 131–139 (1989).
[CrossRef]

S. W. Zucker, L. Iverson, “From orientation selection to optical flow,” Comput. Vision Graph. Image Process. 37, 196–220 (1987).
[CrossRef]

Can. J. Psychol. (1)

R. Gurnsey, D. S. Laundry, “Texture discrimination with and without abrupt texture gradients,” Can. J. Psychol. 46, 306–332 (1992).
[CrossRef] [PubMed]

Cold Spring Harbor Symp. Quant. Biol. (1)

K. Nakayama, S. Shimojo, “Toward a neural understanding of visual surface representation,” Cold Spring Harbor Symp. Quant. Biol. 15, 911–924 (1990).
[CrossRef]

Comput. Vision Graph. Image Process. (1)

S. W. Zucker, L. Iverson, “From orientation selection to optical flow,” Comput. Vision Graph. Image Process. 37, 196–220 (1987).
[CrossRef]

J. Neurophysiol. (1)

I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–667 (1985).
[PubMed]

J. Opt. Soc. Am. (2)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Opt. Soc. Am. 49, 467–477 (1971).

G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (5)

J. Physiol. (1)

F. W. Campbell, J. G. Robson, “On the application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
[PubMed]

Nature (2)

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature 333, 363–364 (1988).
[CrossRef] [PubMed]

B. Julesz, “Textons: the elements of texture perception, and their interactions,” Nature 290, 91–97 (1981).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

J. Beck, “Effect of orientation and of shape similarity on perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

S. Grossberg, “3-D vision and figure–ground separation by visual cortex,” Percept. Psychophys. 55, 48–120 (1994).
[CrossRef] [PubMed]

Perception (1)

D. Regan, “Orientation discrimination for bars defined by orientation texture,” Perception 24, 1131–1138 (1995).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. B (1)

J. Ross, H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Philos. Trans. R. Soc. London, Ser. B 246, 61–69 (1991).
[CrossRef]

Q. J. Exp. Psychol. A (1)

M. J. Morgan, R. M. Ward, E. Castet, “Visual search for a tilted target: tests of spatial uncertainty models,” Q. J. Exp. Psychol. A 51, 347–370 (1998).
[CrossRef] [PubMed]

Spatial Vision (6)

H. P. Snippe, J. J. Koenderink, “Discrimination of geometric angle in the fronto-parallel plane,” Spatial Vision 8, 309–328 (1994).
[CrossRef] [PubMed]

S. C. Dakin, “Orientation variance as a quantifier of structure in texture,” Spatial Vision 12, 1–30 (1999).
[CrossRef] [PubMed]

H. C. Nothdurft, “The conspicuousness of orientation and motion contrast,” Spatial Vision 7, 341–363 (1993).
[CrossRef] [PubMed]

B. S. Rubenstein, D. Sagi, “Effects of foreground scale in texture discrimination tasks: performance is size, shape, and content specific,” Spatial Vision 7, 293–310 (1993).
[CrossRef] [PubMed]

D. Sagi, B. Julesz, “Short-range limitation on detection of feature differences,” Spatial Vision 2, 39–49 (1987).
[CrossRef] [PubMed]

Y. Hel Or, S. W. Zucker, “Texture fields and texture flows: sensitivity to differences,” Spatial Vision 4, 131–139 (1989).
[CrossRef]

Vision Res. (30)

D. R. Keeble, F. A. Kingdom, M. J. Morgan, “The orientational resolution of human texture perception,” Vision Res. 37, 2993–3007 (1997).
[CrossRef]

D. R. Keeble, F. A. Kingdom, B. Moulden, M. J. Morgan, “Detection of orientationally multimodal textures,” Vision Res. 35, 1991–2005 (1995).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

D. H. Foster, S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733–738 (1995).
[CrossRef] [PubMed]

T. Meigen, W. D. Lagreze, M. Bach, “Asymmetries in preattentive line detection,” Vision Res. 34, 3103–3109 (1994).
[CrossRef] [PubMed]

Z. J. He, K. Nakayama, “Perceiving textures: beyond filtering,” Vision Res. 34, 151–162 (1994).
[CrossRef] [PubMed]

J. M. Wolfe, “‘Effortless’ texture segmentation and ‘parallel’ visual search are not the same thing,” Vision Res. 32, 757–763 (1992).
[CrossRef] [PubMed]

D. Kramer, M. Fahle, “A simple mechanism for detecting low curvatures,” Vision Res. 36, 1411–1419 (1996).
[CrossRef] [PubMed]

D. W. Heeley, H. M. Buchanan-Smith, “Mechanisms specialized for the perception of image geometry,” Vision Res. 36, 3607–3627 (1996).
[CrossRef] [PubMed]

D. Sagi, “Detection of an orientation singularity in Gabor textures: effect of signal density and spatial-frequency,” Vision Res. 30, 1377–1388 (1990).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Examining edge- and region-based texture analysis mechanisms,” Vision Res. 38, 439–446 (1998).
[CrossRef] [PubMed]

A. Sutter, N. Graham, “Investigating simple and complex mechanisms in texture segregation using the speed–accuracy tradeoff method,” Vision Res. 35, 2825–2843 (1995).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

H. C. Nothdurft, “Salience from feature contrast: temporal properties of saliency mechanisms,” Vision Res. 40, 2421–2435 (2000).
[CrossRef] [PubMed]

I. Motoyoshi, S. Nishida, “Temporal resolution of orientation-based segregation,” Vision Res. 41, 2089–2105 (2001).
[CrossRef] [PubMed]

F. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

F. A. Kingdom, D. R. Keeble, “A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures,” Vision Res. 36, 409–420 (1996).
[CrossRef] [PubMed]

H. C. Nothdurft, “Orientation sensitivity and texture segmentation in patterns with different line orientation,” Vision Res. 25, 551–560 (1985).
[CrossRef] [PubMed]

H. C. Nothdurft, “Texture segmentation and pop-out from orientation contrast,” Vision Res. 31, 1073–1078 (1991).
[CrossRef] [PubMed]

H. C. Nothdurft, “Salience from feature contrast: additivity across dimensions,” Vision Res. 40, 1183–1201 (2000).
[CrossRef] [PubMed]

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

R. Gray, D. Regan, “Spatial frequency discrimination and detection characteristics for gratings defined by orientation texture,” Vision Res. 38, 2601–2617 (1998).
[CrossRef]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

S. Chen, D. M. Levi, “Angle judgement: is the whole the sum of its parts?” Vision Res. 36, 1721–1235 (1996).
[CrossRef] [PubMed]

D. Regan, R. Gray, S. J. Hamstra, “Evidence for a neural mechanism that encodes angles,” Vision Res. 36, 323–330 (1996).
[CrossRef] [PubMed]

S. C. Dakin, R. J. Watt, “The computation of orientation statistics from visual texture,” Vision Res. 37, 3181–3192 (1997).
[CrossRef]

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

Visual Neurosci. (1)

D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
[CrossRef]

Other (5)

We conducted experiment 1 first, experiment 3 second, and experiment 2 last, so the poor discrimination performance at high pedestal-orientation contrasts in experiment 2 (with noise) is not likely due to a lack of training.

The randomization of the mean orientation was expected to increase the trial-to-trial variation in the subjects’ discrimination performance because the sensitivity to orientation contrasts is known to depend profoundly on the mean orientation of the elements in the texture (see Refs. 60and 61below). This manipulation, however, was necessary to prevent subjects from using absolute orientation as a discrimination cue, and as described below, the errors in the threshold data possibly due to this factor were not large enough to hide the general tendencies of the results.

N. Graham, “Complex channels, early local non-linearities, and normalization in texture segregation,” in M. S. Landy, J. A. Movshon, eds., Computational Models of Visual Processing (MIT Press, Cambridge, Mass., 1994).

J. P. Frisby, Seeing (Oxford U. Press, Oxford, UK, 1979).

D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the relationship between orientation contrast in texture patterns and responses of the visual system. The sigmoid curve illustrates the orientation-contrast-response function, which we estimated from the orientation-contrast discrimination function for each texture pattern.

Fig. 2
Fig. 2

Stimulus display used in experiment 1. A pair of step-modulation textures was presented. Each texture has a step-orientation contrast ϕ between center and surround. In this example, ϕ is 45° and 90° for left and right textures, respectively. It is difficult to discriminate between the pair based on the strength of the texture boundary. The actual display had a larger uniform background.

Fig. 3
Fig. 3

(a) Orientation-contrast-discrimination threshold as a function of pedestal-orientation contrast obtained for the step-modulation texture (Fig. 2). Error bars represent 95% confidence intervals. (b) Orientation-contrast-response functions estimated from discrimination data. Raw response (in arbitrary units) plotted on a log-linear axis. (c) Normalized response plotted on a linear-linear axis.

Fig. 4
Fig. 4

Textures used in experiment 2. Both textures are identical to the step-modulation texture (Fig. 2) except that element orientation is fluctuated with Gaussian orientation noise with standard deviation σ of (a) 12.5° or (b) 25°.

Fig. 5
Fig. 5

(a) Discrimination-threshold functions obtained for textures with different amounts of orientation noise σ. Solid circles represent results for noise-free texture (i.e., replot of Fig. 3). Open circles and squares represent results for textures with small (σ=12.5° for subject IM, 6.25° for SN) and large (σ=25° for IM, 12.5° for SN) amounts of noise, respectively. Left and right panels show results for subjects IM and SN, respectively. Error bars represent 95% confidence intervals. Curves show discrimination-threshold functions calculated from estimated response functions. (b), (c) Orientation-contrast-response functions estimated for all three textures.

Fig. 6
Fig. 6

Stimulus display used in experiment 3. (a) Random-noise textures in which orientation of each element is randomly determined from two angles differing by ϕ. (b) Sinusoidal-modulation textures in which element orientation is modulated by a one-cycle radial sine wave. (c) Ring-shaped textures in which only the annular region near the edge between the center and surround regions in the step-modulation texture (Fig. 2) is presented. (d) Gap textures in which only the annular region near the edge in the step-modulation texture (Fig. 2) is removed. In these examples, ϕ values are 45° and 90° for left and right textures, respectively.

Fig. 7
Fig. 7

(a) Discrimination-threshold functions obtained for step-modulation (solid circles), random-noise (crosses), sinusoidal-modulation (open circles), ring-shaped (diamonds), and enlarged-center step-modulation (squares) texture patterns. Result for the step-modulation texture is a replot of data in Fig. 3. Left and right panels show results for subjects IM and SN, respectively. Error bars represent 95% confidence intervals. Smooth curves show discrimination-threshold functions calculated from estimated response functions. (b), (c) Orientation-contrast-response functions estimated for all five textures.

Fig. 8
Fig. 8

Probability of seeing surface boundaries as a function of orientation contrast in step-modulation and ring-shaped texture patterns. Each panel shows the results a different subject. The viewing distance for subjects KM and IK was 107 cm. Each data point is based on at least 30 judgments. The curves show logistic functions fitted to the data.

Tables (1)

Tables Icon

Table 1 Parameters of Response Function Estimated for Each Texture a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R(ϕ)=A ϕpϕq+Z,

Metrics