Abstract

Experiments with spatially superimposed gratings have defined mechanisms that sum signals across spatial frequency bands while mediating discriminations of small differences in orientation. In the present experiments, localized stimuli (Gaussian bars and derivatives of Gaussian bars) occupying different spatial frequency bands were superimposed in different phase and location relationships to assess the sensitivity of the summing mechanisms to these differences. Masking (loss of accuracy when a second component is added as a mask) was unaffected by differences in either phase or location (15 min separation). Summation (increase in accuracy when both components vary together) occurs for all phase relationships but is reduced by spatial separation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Sachs, J. Nachmias, J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176–1186 (1971).
    [CrossRef] [PubMed]
  2. J. P. Thomas, J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652–660 (1979).
    [CrossRef] [PubMed]
  3. A. B. Watson, “Detection and recognition of simple spatial forms,” in Physiological and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer, New York, 1983), pp. 100–114.
  4. H. R. Wilson, D. J. Gelb, “Modified line element theory for spatial frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124–131 (1984).
    [CrossRef] [PubMed]
  5. N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
    [CrossRef] [PubMed]
  6. L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1892 (1992).
    [CrossRef] [PubMed]
  7. L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
    [CrossRef] [PubMed]
  8. J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
    [CrossRef]
  9. L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: orientation information is integrated across spa-tial scale; spatial-frequency and contrast information are not,” Perception 26, 1101–1120 (1997).
    [CrossRef]
  10. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Acad. London Ser. B 200, 269–294 (1980).
    [CrossRef]
  11. M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Acad. London Ser. B Biol. Sci. 235, 221–245 (1988).
    [CrossRef]
  12. Estimation software written by T. D. Wickens is available free from him: e-mail, twickens@psych.ucla.edu.
  13. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1965), pp. 238–239, 271–275.
  14. J. M. Foley, “Human luminance pattern-vision mechanisms: Masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
    [CrossRef]
  15. W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
    [CrossRef] [PubMed]
  16. D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
    [PubMed]
  17. J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
    [CrossRef]

1999 (1)

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

1998 (1)

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

1997 (2)

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: orientation information is integrated across spa-tial scale; spatial-frequency and contrast information are not,” Perception 26, 1101–1120 (1997).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

1992 (2)

W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1892 (1992).
[CrossRef] [PubMed]

1988 (1)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Acad. London Ser. B Biol. Sci. 235, 221–245 (1988).
[CrossRef]

1984 (1)

1980 (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Acad. London Ser. B 200, 269–294 (1980).
[CrossRef]

1979 (1)

1971 (1)

Albrecht, D. G.

W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
[CrossRef] [PubMed]

Burr, D. C.

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Acad. London Ser. B Biol. Sci. 235, 221–245 (1988).
[CrossRef]

Foley, J. M.

Geisler, W. S.

W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
[CrossRef] [PubMed]

Gelb, D. J.

Gille, J.

Graham, N.

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1965), pp. 238–239, 271–275.

Heeger, D. J.

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

Hildreth, E.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Acad. London Ser. B 200, 269–294 (1980).
[CrossRef]

Marr, D.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Acad. London Ser. B 200, 269–294 (1980).
[CrossRef]

Morrone, M. C.

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Acad. London Ser. B Biol. Sci. 235, 221–245 (1988).
[CrossRef]

Nachmias, J.

Olzak, L. A.

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: orientation information is integrated across spa-tial scale; spatial-frequency and contrast information are not,” Perception 26, 1101–1120 (1997).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1892 (1992).
[CrossRef] [PubMed]

Robson, J. G.

Sachs, M. B.

Sutter, A.

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1965), pp. 238–239, 271–275.

Thomas, J. P.

Watson, A. B.

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physiological and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer, New York, 1983), pp. 100–114.

Wickens, T. D.

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: orientation information is integrated across spa-tial scale; spatial-frequency and contrast information are not,” Perception 26, 1101–1120 (1997).
[CrossRef]

Estimation software written by T. D. Wickens is available free from him: e-mail, twickens@psych.ucla.edu.

Wilson, H. R.

J. Neurophysiol. (1)

D. J. Heeger, “Modeling simple-cell direction selectivity with normalized, half-squared linear operators,” J. Neurophysiol. 70, 1885–1898 (1993).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

Perception (1)

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: orientation information is integrated across spa-tial scale; spatial-frequency and contrast information are not,” Perception 26, 1101–1120 (1997).
[CrossRef]

Proc. R. Acad. London Ser. B (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Acad. London Ser. B 200, 269–294 (1980).
[CrossRef]

Proc. R. Acad. London Ser. B Biol. Sci. (1)

M. C. Morrone, D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Acad. London Ser. B Biol. Sci. 235, 221–245 (1988).
[CrossRef]

Vision Res. (4)

N. Graham, A. Sutter, “Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels,” Vision Res. 38, 231–257 (1998).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Configural effects constrain Fourier models of pattern discrimination,” Vision Res. 32, 1885–1892 (1992).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

W. S. Geisler, D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
[CrossRef] [PubMed]

Other (3)

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physiological and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer, New York, 1983), pp. 100–114.

Estimation software written by T. D. Wickens is available free from him: e-mail, twickens@psych.ucla.edu.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1965), pp. 238–239, 271–275.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top row, individual stimulus components (left to right): wide bar, wide edge, and narrow bar. Bottom row, examples of pairs superimposed in the negative cue-summation configuration (left to right): opposite phase edges, bar–edge. Marker: 0.5 deg of visual angle.

Fig. 2
Fig. 2

Power density spectra of the three stimulus components.

Fig. 3
Fig. 3

Illustration of the six different measurement conditions. The dark, wider rectangle represents one of the two superimposed components in each pairing. The open, narrower rectangle represents the second component.

Fig. 4
Fig. 4

Masking ratios for the different pairings: masked d divided the corresponding control d.

Fig. 5
Fig. 5

Configuration ratios for the different pairings: d in the negative-cue-summation condition divided by d in the positive-cue-summation condition.

Fig. 6
Fig. 6

Summation ratios for the different pairings: d in the positive-cue-summation condition divided by the sum of the d values in the corresponding masking conditions.

Tables (1)

Tables Icon

Table 1 Mean Discrimination Accuracy by Subject, Condition, and Component Pairing

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ok,j=iwk,iri,j,
dk,(AvsB)=(O¯k,A-O¯k,B)/σk=iwk,i(r¯i,A-r¯i,B)/σk,
d(AvsB)=k[dk,(AvsB)]20.5.

Metrics