Abstract

Both psychophysical and neurophysiological evidence suggest that there are two visual cortical processing streams, a linear stream that processes first-order stimuli and a nonlinear stream that also processes second-order stimuli. This evidence also suggests that before the extraction of the second-order signal, the nonlinear pathway broadly but not completely pools signals across initial linear filters that encode the orientation of the carrier of the second-order signal. The evidence suggests that such pooling does not occur across carrier spatial frequencies. We show that similar results are obtained with repulsion tilt illusions but not with attraction effects. Attraction effects exhibit complete orientation crossover (while retaining spatial frequency selectivity), perhaps indicating higher-level processing; an experiment on interocular transfer of the effects supported this conclusion.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
    [CrossRef] [PubMed]
  2. R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
    [CrossRef] [PubMed]
  3. D. H. Hubel, T. N. Wiesel, “Functional architecture of macaque visual cortex,” Proc. R. Soc. London 198, 1–59 (1977).
    [CrossRef]
  4. C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
    [CrossRef] [PubMed]
  5. I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998).
    [CrossRef]
  6. I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
    [PubMed]
  7. K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
    [CrossRef] [PubMed]
  8. L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
    [CrossRef] [PubMed]
  9. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
    [CrossRef]
  10. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  11. G. J. Burton, “Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
    [CrossRef] [PubMed]
  12. N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
    [CrossRef] [PubMed]
  13. A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
    [CrossRef] [PubMed]
  14. G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
    [CrossRef] [PubMed]
  15. Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
    [CrossRef] [PubMed]
  16. P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
    [CrossRef] [PubMed]
  17. J. J. Gibson, M. Radner, “Adaptation and contrast in the perception of tilted lines: I. Quantitative Studies,” J. Exp. Psychol. 20, 453–467 (1937).
    [CrossRef]
  18. C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
    [CrossRef]
  19. P. Wenderoth, S. Johnstone, “Possible neural substrates for orientation analysis and perception,” Perception 16, 693–709 (1987).
    [CrossRef] [PubMed]
  20. P. Wenderoth, S. Johnstone, “The different mechanisms of the direct and indirect tilt illusions,” Vision Res. 28, 301–312 (1988).
    [CrossRef] [PubMed]
  21. L. Poom, “Inter-attribute tilt effects and orientation analysis in the visual brain,” Vision Res. 40, 2711–2722 (2000).
    [CrossRef] [PubMed]
  22. R. B. Morant, J. R. Harris, “Two different aftereffects of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
    [CrossRef] [PubMed]
  23. P. Wenderoth, R. van der Zwan, “The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions,” Percept. Psychophys. 46, 338–344 (1989).
    [CrossRef] [PubMed]
  24. P. Wenderoth, S. Johnstone, “The differential effects of brief exposures and surrounding contours on direct and indirect tilt illusions,” Perception 17, 165–176 (1988).
    [CrossRef] [PubMed]
  25. R. van der Zwan, P. M. Wenderoth, “Mechanisms of purely subjective contour tilt aftereffects,” Vision Res. 35, 2547–2557 (1995).
    [CrossRef] [PubMed]
  26. S. T. Smith, P. Wenderoth, “Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) or sustained (P-like) mechanisms,” Vision Res. 39, 4113–4121 (1999).
    [CrossRef]
  27. G. B. Wetherill, H. Levitt, “Sequential estimation of points on a psychometric function,” Br. Math. Statist. Psychol. 18, 1–10 (1965).
    [CrossRef]
  28. N. J. Wade, “The influence of colour and contour rivalry on the magnitude of the tilt illusion,” Vision Res. 20, 229–233 (1980).
    [CrossRef] [PubMed]
  29. M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
    [CrossRef] [PubMed]
  30. A. Hohmann, O. D. Creutzfeldt, “Squint and the development of binocularity in humans,” Nature (London) 254, 613–614 (1975).
    [CrossRef]
  31. G. Mohn, J. Van Hof Van Duin, “On the relation of stereoacuity to interocular transfer of the motion and the tilt aftereffects,” Vision Res. 23, 1087–1096 (1983).
    [CrossRef] [PubMed]
  32. J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
    [CrossRef]
  33. C. Ware, D. E. Mitchell, “On interocular transfer of various visual aftereffects in normal and stereoblind observers,” Vision Res. 14, 731–734 (1974).
    [CrossRef] [PubMed]
  34. R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
    [CrossRef] [PubMed]
  35. R. van der Zwan, P. Wenderoth, “Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry,” Visual Neurosci. 11, 823–830 (1994).
    [CrossRef]
  36. S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
    [CrossRef] [PubMed]
  37. J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
    [CrossRef]
  38. N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
    [CrossRef] [PubMed]
  39. H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
    [CrossRef] [PubMed]

2000 (3)

C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
[CrossRef]

L. Poom, “Inter-attribute tilt effects and orientation analysis in the visual brain,” Vision Res. 40, 2711–2722 (2000).
[CrossRef] [PubMed]

S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

1999 (4)

S. T. Smith, P. Wenderoth, “Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) or sustained (P-like) mechanisms,” Vision Res. 39, 4113–4121 (1999).
[CrossRef]

P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

1998 (3)

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998).
[CrossRef]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

1996 (3)

K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
[CrossRef] [PubMed]

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

1995 (1)

R. van der Zwan, P. M. Wenderoth, “Mechanisms of purely subjective contour tilt aftereffects,” Vision Res. 35, 2547–2557 (1995).
[CrossRef] [PubMed]

1994 (1)

R. van der Zwan, P. Wenderoth, “Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry,” Visual Neurosci. 11, 823–830 (1994).
[CrossRef]

1993 (2)

Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

1992 (2)

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

1989 (2)

P. Wenderoth, R. van der Zwan, “The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions,” Percept. Psychophys. 46, 338–344 (1989).
[CrossRef] [PubMed]

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

1988 (3)

P. Wenderoth, S. Johnstone, “The differential effects of brief exposures and surrounding contours on direct and indirect tilt illusions,” Perception 17, 165–176 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “The different mechanisms of the direct and indirect tilt illusions,” Vision Res. 28, 301–312 (1988).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

1987 (1)

P. Wenderoth, S. Johnstone, “Possible neural substrates for orientation analysis and perception,” Perception 16, 693–709 (1987).
[CrossRef] [PubMed]

1986 (1)

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

1983 (1)

G. Mohn, J. Van Hof Van Duin, “On the relation of stereoacuity to interocular transfer of the motion and the tilt aftereffects,” Vision Res. 23, 1087–1096 (1983).
[CrossRef] [PubMed]

1982 (2)

R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef] [PubMed]

1980 (1)

N. J. Wade, “The influence of colour and contour rivalry on the magnitude of the tilt illusion,” Vision Res. 20, 229–233 (1980).
[CrossRef] [PubMed]

1977 (1)

D. H. Hubel, T. N. Wiesel, “Functional architecture of macaque visual cortex,” Proc. R. Soc. London 198, 1–59 (1977).
[CrossRef]

1975 (2)

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

A. Hohmann, O. D. Creutzfeldt, “Squint and the development of binocularity in humans,” Nature (London) 254, 613–614 (1975).
[CrossRef]

1974 (1)

C. Ware, D. E. Mitchell, “On interocular transfer of various visual aftereffects in normal and stereoblind observers,” Vision Res. 14, 731–734 (1974).
[CrossRef] [PubMed]

1973 (1)

G. J. Burton, “Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

1972 (1)

J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
[CrossRef]

1965 (2)

R. B. Morant, J. R. Harris, “Two different aftereffects of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[CrossRef] [PubMed]

G. B. Wetherill, H. Levitt, “Sequential estimation of points on a psychometric function,” Br. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

1937 (1)

J. J. Gibson, M. Radner, “Adaptation and contrast in the perception of tilted lines: I. Quantitative Studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

Albrecht, D. G.

R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

Badcock, D. R.

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

Baker, C. L.

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998).
[CrossRef]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Blakemore, C.

J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
[CrossRef]

Broadbent, D. E.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Burton, G. J.

G. J. Burton, “Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

Chambers, B. E.

J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
[CrossRef]

Chubb, C.

Clifford, C. W. G.

C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
[CrossRef]

Creutzfeldt, O. D.

A. Hohmann, O. D. Creutzfeldt, “Squint and the development of binocularity in humans,” Nature (London) 254, 613–614 (1975).
[CrossRef]

Dakin, S. C.

S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef] [PubMed]

R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Fleet, D. J.

K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
[CrossRef] [PubMed]

Georgeson, M. A.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Gibson, J. J.

J. J. Gibson, M. Radner, “Adaptation and contrast in the perception of tilted lines: I. Quantitative Studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

Graham, N.

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

Harris, J. R.

R. B. Morant, J. R. Harris, “Two different aftereffects of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[CrossRef] [PubMed]

Henning, G. B.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Hepler, N.

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef] [PubMed]

Hertz, B. G.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

Hibbard, P. B.

K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
[CrossRef] [PubMed]

Hohmann, A.

A. Hohmann, O. D. Creutzfeldt, “Squint and the development of binocularity in humans,” Nature (London) 254, 613–614 (1975).
[CrossRef]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Functional architecture of macaque visual cortex,” Proc. R. Soc. London 198, 1–59 (1977).
[CrossRef]

Johnstone, S.

P. Wenderoth, S. Johnstone, “The different mechanisms of the direct and indirect tilt illusions,” Vision Res. 28, 301–312 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “The differential effects of brief exposures and surrounding contours on direct and indirect tilt illusions,” Perception 17, 165–176 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “Possible neural substrates for orientation analysis and perception,” Perception 16, 693–709 (1987).
[CrossRef] [PubMed]

Joung, W.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

Langley, K.

K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
[CrossRef] [PubMed]

Latimer, C.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

Leo, E.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

Levi, D. M.

P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
[CrossRef] [PubMed]

Levitt, H.

G. B. Wetherill, H. Levitt, “Sequential estimation of points on a psychometric function,” Br. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Lin, L.-M.

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

Mareschal, I.

S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998).
[CrossRef]

McGraw, P. V.

P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
[CrossRef] [PubMed]

Mitchell, D. E.

C. Ware, D. E. Mitchell, “On interocular transfer of various visual aftereffects in normal and stereoblind observers,” Vision Res. 14, 731–734 (1974).
[CrossRef] [PubMed]

Mohn, G.

G. Mohn, J. Van Hof Van Duin, “On the relation of stereoacuity to interocular transfer of the motion and the tilt aftereffects,” Vision Res. 23, 1087–1096 (1983).
[CrossRef] [PubMed]

Morant, R. B.

R. B. Morant, J. R. Harris, “Two different aftereffects of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[CrossRef] [PubMed]

Movshon, J. A.

J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
[CrossRef]

Nakayama, K.

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

Olzak, L. A.

Paradiso, M. A.

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

Poom, L.

L. Poom, “Inter-attribute tilt effects and orientation analysis in the visual brain,” Vision Res. 40, 2711–2722 (2000).
[CrossRef] [PubMed]

Radner, M.

J. J. Gibson, M. Radner, “Adaptation and contrast in the perception of tilted lines: I. Quantitative Studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

Richards, W. A.

Scott-Samuel, N. E.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Shimojo, S.

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

Smith, S. T.

S. T. Smith, P. Wenderoth, “Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) or sustained (P-like) mechanisms,” Vision Res. 39, 4113–4121 (1999).
[CrossRef]

Spehar, B.

C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
[CrossRef]

Sperling, G.

Sutter, A.

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

Thomas, J. P.

Thorell, L. G.

R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

van der Zwan, R.

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

R. van der Zwan, P. M. Wenderoth, “Mechanisms of purely subjective contour tilt aftereffects,” Vision Res. 35, 2547–2557 (1995).
[CrossRef] [PubMed]

R. van der Zwan, P. Wenderoth, “Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry,” Visual Neurosci. 11, 823–830 (1994).
[CrossRef]

P. Wenderoth, R. van der Zwan, “The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions,” Percept. Psychophys. 46, 338–344 (1989).
[CrossRef] [PubMed]

Van Hof Van Duin, J.

G. Mohn, J. Van Hof Van Duin, “On the relation of stereoacuity to interocular transfer of the motion and the tilt aftereffects,” Vision Res. 23, 1087–1096 (1983).
[CrossRef] [PubMed]

Venkatesan, C.

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

Wade, N. J.

N. J. Wade, “The influence of colour and contour rivalry on the magnitude of the tilt illusion,” Vision Res. 20, 229–233 (1980).
[CrossRef] [PubMed]

Ware, C.

C. Ware, D. E. Mitchell, “On interocular transfer of various visual aftereffects in normal and stereoblind observers,” Vision Res. 14, 731–734 (1974).
[CrossRef] [PubMed]

Wenderoth, P.

C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
[CrossRef]

S. T. Smith, P. Wenderoth, “Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) or sustained (P-like) mechanisms,” Vision Res. 39, 4113–4121 (1999).
[CrossRef]

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

R. van der Zwan, P. Wenderoth, “Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry,” Visual Neurosci. 11, 823–830 (1994).
[CrossRef]

P. Wenderoth, R. van der Zwan, “The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions,” Percept. Psychophys. 46, 338–344 (1989).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “The different mechanisms of the direct and indirect tilt illusions,” Vision Res. 28, 301–312 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “The differential effects of brief exposures and surrounding contours on direct and indirect tilt illusions,” Perception 17, 165–176 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “Possible neural substrates for orientation analysis and perception,” Perception 16, 693–709 (1987).
[CrossRef] [PubMed]

Wenderoth, P. M.

R. van der Zwan, P. M. Wenderoth, “Mechanisms of purely subjective contour tilt aftereffects,” Vision Res. 35, 2547–2557 (1995).
[CrossRef] [PubMed]

Wetherill, G. B.

G. B. Wetherill, H. Levitt, “Sequential estimation of points on a psychometric function,” Br. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Whitaker, D.

P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
[CrossRef] [PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Functional architecture of macaque visual cortex,” Proc. R. Soc. London 198, 1–59 (1977).
[CrossRef]

Wilson, H. R.

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

H. R. Wilson, W. A. Richards, “Curvature and separation discrimination at texture boundaries,” J. Opt. Soc. Am. A 9, 1653–1662 (1992).
[CrossRef] [PubMed]

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Yund, E. W.

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef] [PubMed]

Zhou, Y. X.

Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Am. J. Psychol. (1)

R. B. Morant, J. R. Harris, “Two different aftereffects of exposure to visual tilts,” Am. J. Psychol. 78, 218–226 (1965).
[CrossRef] [PubMed]

Br. Math. Statist. Psychol. (1)

G. B. Wetherill, H. Levitt, “Sequential estimation of points on a psychometric function,” Br. Math. Statist. Psychol. 18, 1–10 (1965).
[CrossRef]

Curr. Biol. (2)

R. van der Zwan, E. Leo, W. Joung, C. Latimer, P. Wenderoth, “Evidence that both area V1 and extrastriate visual cortex contribute to symmetry perception,” Curr. Biol. 8, 889–892 (1998).
[CrossRef] [PubMed]

K. Langley, D. J. Fleet, P. B. Hibbard, “Linear filtering precedes nonlinear processing in early vision,” Curr. Biol. 6, 891–896 (1996).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

J. Exp. Psychol. (1)

J. J. Gibson, M. Radner, “Adaptation and contrast in the perception of tilted lines: I. Quantitative Studies,” J. Exp. Psychol. 20, 453–467 (1937).
[CrossRef]

J. Neurophysiol. (1)

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

J. Opt. Soc. Am. A (3)

Nature (London) (1)

A. Hohmann, O. D. Creutzfeldt, “Squint and the development of binocularity in humans,” Nature (London) 254, 613–614 (1975).
[CrossRef]

Nature Neurosci. (2)

P. V. McGraw, D. M. Levi, D. Whitaker, “Spatial characteristics of the second-order visual pathway revealed by positional adaptation,” Nature Neurosci. 2, 479–484 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998).
[CrossRef]

Percept. Psychophys. (1)

P. Wenderoth, R. van der Zwan, “The effects of exposure duration and surrounding frames on direct and indirect tilt aftereffects and illusions,” Percept. Psychophys. 46, 338–344 (1989).
[CrossRef] [PubMed]

Perception (3)

P. Wenderoth, S. Johnstone, “The differential effects of brief exposures and surrounding contours on direct and indirect tilt illusions,” Perception 17, 165–176 (1988).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “Possible neural substrates for orientation analysis and perception,” Perception 16, 693–709 (1987).
[CrossRef] [PubMed]

J. A. Movshon, B. E. Chambers, C. Blakemore, “Interocular transfer in normal humans and those who lack stereopsis,” Perception 1, 483–490 (1972).
[CrossRef]

Proc. R. Soc. London (1)

D. H. Hubel, T. N. Wiesel, “Functional architecture of macaque visual cortex,” Proc. R. Soc. London 198, 1–59 (1977).
[CrossRef]

Proc. R. Soc. London Ser. B (1)

C. W. G. Clifford, P. Wenderoth, B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London Ser. B 267, 1705–1710 (2000).
[CrossRef]

Science (1)

Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Vision Res. (17)

G. J. Burton, “Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency,” Vision Res. 15, 887–899 (1975).
[CrossRef] [PubMed]

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

R. L. de Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
[CrossRef] [PubMed]

R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982).
[CrossRef] [PubMed]

C. Ware, D. E. Mitchell, “On interocular transfer of various visual aftereffects in normal and stereoblind observers,” Vision Res. 14, 731–734 (1974).
[CrossRef] [PubMed]

G. Mohn, J. Van Hof Van Duin, “On the relation of stereoacuity to interocular transfer of the motion and the tilt aftereffects,” Vision Res. 23, 1087–1096 (1983).
[CrossRef] [PubMed]

N. Graham, A. Sutter, C. Venkatesan, “Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation,” Vision Res. 33, 1893–1911 (1993).
[CrossRef] [PubMed]

P. Wenderoth, S. Johnstone, “The different mechanisms of the direct and indirect tilt illusions,” Vision Res. 28, 301–312 (1988).
[CrossRef] [PubMed]

L. Poom, “Inter-attribute tilt effects and orientation analysis in the visual brain,” Vision Res. 40, 2711–2722 (2000).
[CrossRef] [PubMed]

N. J. Wade, “The influence of colour and contour rivalry on the magnitude of the tilt illusion,” Vision Res. 20, 229–233 (1980).
[CrossRef] [PubMed]

M. A. Paradiso, S. Shimojo, K. Nakayama, “Subjective contours, tilt aftereffects, and visual cortical organization,” Vision Res. 29, 1205–1213 (1989).
[CrossRef] [PubMed]

R. van der Zwan, P. M. Wenderoth, “Mechanisms of purely subjective contour tilt aftereffects,” Vision Res. 35, 2547–2557 (1995).
[CrossRef] [PubMed]

S. T. Smith, P. Wenderoth, “Large repulsion, but not attraction, tilt illusions occur when stimulus parameters selectively favour either transient (M-like) or sustained (P-like) mechanisms,” Vision Res. 39, 4113–4121 (1999).
[CrossRef]

S. C. Dakin, I. Mareschal, “Sensitivity to contrast modulation depends on carrier spatial frequency and orientation,” Vision Res. 40, 311–329 (2000).
[CrossRef] [PubMed]

Visual Neurosci. (2)

R. van der Zwan, P. Wenderoth, “Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry,” Visual Neurosci. 11, 823–830 (1994).
[CrossRef]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Example of the kinds of stimuli used in these experiments. Subjects judged whether the contrast envelope in the inner test patch appeared tilted left or right of vertical.

Fig. 2
Fig. 2

Repulsion and attraction tilt illusions (in degrees) as a function of test and inducing carrier spatial frequency, when inducing- and test-stimulus carriers were parallel (para) or orthogonal (orth), Experiment 1. Error bars represent ±1 standard error.

Fig. 3
Fig. 3

Magnitude of the tilt illusion (in degrees) as a function of inducing- and test-carrier spatial frequencies. Experiment 2. (a) Repulsion effects, spatial frequencies 4.5 and 9 cpd. (b) Attraction effects, spatial frequencies 4.5 and 9 cpd. (c) Repulsion effects, spatial frequencies 6 and 9 cpd. (d) Attraction effects, spatial frequencies 6 and 9 cpd. Error bars represent ±1 standard error.

Fig. 4
Fig. 4

Repulsion and attraction tilt illusions (in degrees) when inducing- and test-stimuli were in the same eye (MON/MON) or different eyes (IOT), as a function of whether inducing- and test-carrier orientations were parallel (para) or orthogonal (orth), Experiment 3. Error bars represent ±1 standard error.

Metrics