Abstract

Limited-lifetime Gabor stimuli were used to assess both first- and second-order motion in peripheral vision. Both first- and second-order motion mechanisms were present at a 20-deg eccentricity. Second-order motion, unlike first-order, exhibits a bias for centrifugal motion, suggesting a role for the second-order mechanism in optic flow processing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  2. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef] [PubMed]
  3. A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 145–176.
  4. C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
    [CrossRef] [PubMed]
  5. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]
  6. P. J. Bex, C. L. Baker, “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
    [CrossRef] [PubMed]
  7. T. Ledgeway, R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
    [CrossRef] [PubMed]
  8. N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
    [CrossRef] [PubMed]
  9. I. A. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
    [CrossRef]
  10. M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
    [CrossRef]
  11. L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
    [CrossRef]
  12. G. Mather, S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
    [CrossRef] [PubMed]
  13. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
    [CrossRef] [PubMed]
  14. S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
    [CrossRef] [PubMed]
  15. N. E. Scott-Samuel, A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
    [CrossRef]
  16. G. Mather, “First-order and second-order visual processes in the perception of motion and tilt,” Vision Res. 31, 161–167 (1991).
    [CrossRef] [PubMed]
  17. T. Ledgeway, A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
    [CrossRef] [PubMed]
  18. S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
    [CrossRef] [PubMed]
  19. R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
    [CrossRef]
  20. C. Habak, J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
    [CrossRef] [PubMed]
  21. L. M. Vaina, A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
    [CrossRef]
  22. L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
    [CrossRef]
  23. L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
    [CrossRef] [PubMed]
  24. M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
    [PubMed]
  25. Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
    [CrossRef] [PubMed]
  26. Y.-X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
    [PubMed]
  27. Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
    [PubMed]
  28. I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
    [CrossRef]
  29. I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
    [PubMed]
  30. I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
    [CrossRef]
  31. T. D. Albright, “Form–cue invariant motion processing in the primate visual cortex,” Science 255, 1141–1143 (1992).
    [CrossRef] [PubMed]
  32. J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
    [PubMed]
  33. B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).
  34. L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  35. E. A. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  36. J. C. Boulton, C. L. Baker, “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
    [CrossRef] [PubMed]
  37. C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
    [CrossRef]
  38. C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
    [CrossRef] [PubMed]
  39. J. C. Boulton, C. L. Baker, “Psychophysical evidence for both a ‘quasi-linear’ and a ‘non-linear’ mechanism for the detection of motion ,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE2054, 124–133 (1994).
    [CrossRef]
  40. J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
    [CrossRef] [PubMed]
  41. J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
    [CrossRef] [PubMed]
  42. P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
    [CrossRef] [PubMed]
  43. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [CrossRef] [PubMed]
  44. J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
    [CrossRef]
  45. J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
    [CrossRef]
  46. A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
    [CrossRef]
  47. J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
    [CrossRef] [PubMed]
  48. A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
    [CrossRef]
  49. Y.-Z. Wang, R. F. Hess, C. L. Baker, “Second-order motion perception in peripheral vision: limits of early filtering,” J. Opt. Soc. Am. A 14, 3145–3153 (1997).
    [CrossRef]
  50. J. J. Gibson, “The visual perception of objective and subjective movement,” Psychol. Rev. 61, 304–314 (1954).
    [CrossRef] [PubMed]
  51. K. Nakayama, “Biological motion processing: a review,” Vision Res. 25, 625–660 (1985).
    [CrossRef]
  52. M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
    [CrossRef] [PubMed]
  53. K. Ball, R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
    [CrossRef] [PubMed]
  54. S. Mateeff, J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
    [CrossRef] [PubMed]
  55. M. Fahle, C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
    [CrossRef] [PubMed]
  56. S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
    [CrossRef]
  57. S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
    [CrossRef] [PubMed]
  58. W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
    [CrossRef]
  59. M. Edwards, D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
    [CrossRef] [PubMed]
  60. J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res. 34, 1029–1037 (1994).
    [CrossRef] [PubMed]
  61. Y. Ohtani, Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
    [CrossRef] [PubMed]
  62. B. L. Gros, R. Blake, E. Hiris, “Anisotropies in visual perception: a fresh look,” J. Opt. Soc. Am. A 15, 2003–2011 (1998).
    [CrossRef]
  63. P. Bakan, K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
    [CrossRef]
  64. T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
    [CrossRef] [PubMed]
  65. T. D. Albright, “Centrifugal directional bias in the middle temporal visual area (MT) of the macaque,” Visual Neurosci. 2, 177–188 (1989).
    [CrossRef]
  66. D. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  67. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
    [CrossRef] [PubMed]
  68. P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
    [CrossRef] [PubMed]
  69. O. Braddick, “A short-range process in apparent movement,” Vision Res. 14, 519–527 (1974).
    [CrossRef] [PubMed]
  70. K. Nakayama, “Differential motion hyperacuity under conditions of common image motion,” Vision Res. 21, 1475–1482 (1981).
    [CrossRef] [PubMed]
  71. C. L. Baker, O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
    [CrossRef] [PubMed]
  72. M. G. Harris, “Optic and retinal flow,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 307–332.
  73. L. R. Harris, “Visual motion caused by movements of the eye, head and body,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 397–435.
  74. E. C. Hildreth, C. S. Royden, “Computing observer motion from optical flow,” in High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 269–293.
  75. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
    [CrossRef]

2000

T. Ledgeway, R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
[CrossRef] [PubMed]

N. E. Scott-Samuel, A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
[CrossRef]

C. Habak, J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
[CrossRef] [PubMed]

1999

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

P. J. Bex, C. L. Baker, “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

1998

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
[CrossRef]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
[CrossRef]

C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
[CrossRef]

C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

B. L. Gros, R. Blake, E. Hiris, “Anisotropies in visual perception: a fresh look,” J. Opt. Soc. Am. A 15, 2003–2011 (1998).
[CrossRef]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

1997

Y. Ohtani, Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
[CrossRef] [PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
[CrossRef] [PubMed]

J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
[CrossRef]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
[CrossRef]

Y.-Z. Wang, R. F. Hess, C. L. Baker, “Second-order motion perception in peripheral vision: limits of early filtering,” J. Opt. Soc. Am. A 14, 3145–3153 (1997).
[CrossRef]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

1996

L. M. Vaina, A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
[CrossRef]

Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
[PubMed]

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).

1995

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

1994

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
[CrossRef]

J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res. 34, 1029–1037 (1994).
[CrossRef] [PubMed]

I. A. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
[CrossRef]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
[CrossRef] [PubMed]

S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
[CrossRef] [PubMed]

Y.-X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
[PubMed]

1993

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

G. Mather, S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
[CrossRef] [PubMed]

P. Bakan, K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
[CrossRef]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

1992

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

T. D. Albright, “Form–cue invariant motion processing in the primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

1991

G. Mather, “First-order and second-order visual processes in the perception of motion and tilt,” Vision Res. 31, 161–167 (1991).
[CrossRef] [PubMed]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

D. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

M. Fahle, C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
[CrossRef] [PubMed]

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
[CrossRef] [PubMed]

1989

T. D. Albright, “Centrifugal directional bias in the middle temporal visual area (MT) of the macaque,” Visual Neurosci. 2, 177–188 (1989).
[CrossRef]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

1988

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

S. Mateeff, J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
[CrossRef] [PubMed]

1985

C. L. Baker, O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
[CrossRef] [PubMed]

K. Nakayama, “Biological motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef]

E. A. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

1981

K. Nakayama, “Differential motion hyperacuity under conditions of common image motion,” Vision Res. 21, 1475–1482 (1981).
[CrossRef] [PubMed]

1980

K. Ball, R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
[CrossRef] [PubMed]

1978

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[CrossRef] [PubMed]

1974

O. Braddick, “A short-range process in apparent movement,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

1966

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

1954

J. J. Gibson, “The visual perception of objective and subjective movement,” Psychol. Rev. 61, 304–314 (1954).
[CrossRef] [PubMed]

Adelson, E. A.

Albright, T. D.

T. D. Albright, “Form–cue invariant motion processing in the primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

T. D. Albright, “Centrifugal directional bias in the middle temporal visual area (MT) of the macaque,” Visual Neurosci. 2, 177–188 (1989).
[CrossRef]

Andersen, R. A.

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).

Anderson, S. J.

I. A. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
[CrossRef]

Ashida, H.

S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
[CrossRef] [PubMed]

Badcock, D. R.

M. Edwards, D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
[CrossRef] [PubMed]

Bakan, P.

P. Bakan, K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
[CrossRef]

Baker, C. L.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
[CrossRef]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
[CrossRef] [PubMed]

Y.-Z. Wang, R. F. Hess, C. L. Baker, “Second-order motion perception in peripheral vision: limits of early filtering,” J. Opt. Soc. Am. A 14, 3145–3153 (1997).
[CrossRef]

Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
[PubMed]

Y.-X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
[PubMed]

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
[CrossRef] [PubMed]

C. L. Baker, O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Psychophysical evidence for both a ‘quasi-linear’ and a ‘non-linear’ mechanism for the detection of motion ,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE2054, 124–133 (1994).
[CrossRef]

Ball, K.

K. Ball, R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
[CrossRef] [PubMed]

Bergen, J. R.

Bex, P. J.

P. J. Bex, C. L. Baker, “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
[CrossRef] [PubMed]

Blake, R.

Bodanecky, Z.

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

Boulton, J. C.

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Psychophysical evidence for both a ‘quasi-linear’ and a ‘non-linear’ mechanism for the detection of motion ,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE2054, 124–133 (1994).
[CrossRef]

Braddick, O.

O. Braddick, “A short-range process in apparent movement,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

Braddick, O. J.

C. L. Baker, O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
[CrossRef] [PubMed]

Cavanagh, P.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Chubb, C.

Clifford, C. W. G.

C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
[CrossRef]

Cowey, A.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

L. M. Vaina, A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
[CrossRef]

DeYoe, E. A.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Dosher, B. A.

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

Edwards, M.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
[CrossRef] [PubMed]

Ehrenstein, W. H.

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

Ejima, Y.

Y. Ohtani, Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
[CrossRef] [PubMed]

Fahle, M.

M. Fahle, C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
[CrossRef] [PubMed]

Faubert, J.

C. Habak, J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
[CrossRef] [PubMed]

Fleet, D.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
[CrossRef]

Fox, J. M.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Freedman, J. N.

C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
[CrossRef]

Geesaman, B. J.

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).

Georgeson, M. A.

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[CrossRef] [PubMed]

Gibson, J. J.

J. J. Gibson, “The visual perception of objective and subjective movement,” Psychol. Rev. 61, 304–314 (1954).
[CrossRef] [PubMed]

Greenlee, M. W.

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

Gros, B. L.

Gurnsey, R.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
[CrossRef]

Habak, C.

C. Habak, J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
[CrossRef] [PubMed]

Harris, L. R.

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

L. R. Harris, “Visual motion caused by movements of the eye, head and body,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 397–435.

Harris, M. G.

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[CrossRef] [PubMed]

M. G. Harris, “Optic and retinal flow,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 307–332.

Hess, R. F.

T. Ledgeway, R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
[CrossRef] [PubMed]

C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

Y.-Z. Wang, R. F. Hess, C. L. Baker, “Second-order motion perception in peripheral vision: limits of early filtering,” J. Opt. Soc. Am. A 14, 3145–3153 (1997).
[CrossRef]

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

Hildreth, E. C.

E. C. Hildreth, C. S. Royden, “Computing observer motion from optical flow,” in High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 269–293.

Hiris, E.

Hohnsbein, J.

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
[CrossRef] [PubMed]

Holliday, I. A.

I. A. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
[CrossRef]

Kennedy, D.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

Knierim, J. J.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Koenderink, J. J.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

Landy, M. S.

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

Lavender, A. D.

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

Ledgeway, T.

T. Ledgeway, R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
[CrossRef] [PubMed]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
[CrossRef]

T. Ledgeway, A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Makris, N.

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

Mareschal, I.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
[CrossRef]

Mateeff, S.

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

S. Mateeff, J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
[CrossRef] [PubMed]

Mather, G.

G. Mather, S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

G. Mather, “First-order and second-order visual processes in the perception of motion and tilt,” Vision Res. 31, 161–167 (1991).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

McCarthy, J.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
[CrossRef]

McWirth, R. A.

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

Milders, M. V.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

Mizusawa, K.

P. Bakan, K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
[CrossRef]

Movshon, J. A.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Nakayama, K.

K. Nakayama, “Biological motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef]

K. Nakayama, “Differential motion hyperacuity under conditions of common image motion,” Vision Res. 21, 1475–1482 (1981).
[CrossRef] [PubMed]

Nishida, S.

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
[CrossRef] [PubMed]

O’Keefe, L. P.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Ohtani, Y.

Y. Ohtani, Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
[CrossRef] [PubMed]

Olavarria, J. F.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Pantle, A.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
[CrossRef]

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

Pelli, D.

D. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

Perkins, M. E.

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

Pinkus, A.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
[CrossRef]

Potechin, C.

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
[CrossRef]

Powell, D. A.

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

Radil, T.

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

Raymond, J. E.

J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res. 34, 1029–1037 (1994).
[CrossRef] [PubMed]

Royden, C. S.

E. C. Hildreth, C. S. Royden, “Computing observer motion from optical flow,” in High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 269–293.

Sato, T.

S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
[CrossRef] [PubMed]

Scott, T. R.

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

Scott-Samuel, N. E.

N. E. Scott-Samuel, A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
[CrossRef]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

Seiffert, A. E.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Sekuler, R.

K. Ball, R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
[CrossRef] [PubMed]

Smith, A. T.

N. E. Scott-Samuel, A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
[CrossRef]

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
[CrossRef]

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

T. Ledgeway, A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 145–176.

Solomon, J. A.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Sperling, G.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

Vaina, L. M.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
[CrossRef]

L. M. Vaina, A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
[CrossRef]

van de Grind, W. A.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

van Doorn, A. J.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

van Essen, D. C.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Voerman, H.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

Wang, Y.-Z.

Wehrhahn, C.

M. Fahle, C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
[CrossRef] [PubMed]

West, S.

G. Mather, S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

Yakimoff, N.

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

Zanker, J. M.

Zhang, L.

D. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Zhou, Y.-X.

Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
[PubMed]

Y.-X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
[PubMed]

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Cogn. Brain Res.

C. W. G. Clifford, J. N. Freedman, L. M. Vaina, “First- and second- order motion perception in Gabor micropattern stimuli: psychophysics and computational modelling,” Cogn. Brain Res. 6, 263–271 (1998).
[CrossRef]

Curr. Opin. Neurobiol.

C. L. Baker, “Central neural mechanisms for detecting second-order motion,” Curr. Opin. Neurobiol. 9, 461–466 (1999).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol.

M. Fahle, C. Wehrhahn, “Motion perception in the peripheral visual field,” Graefes Arch. Clin. Exp. Ophthalmol. 229, 430–436 (1991).
[CrossRef] [PubMed]

Hum. Brain Mapp.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

J. Exp. Psychol.

P. Bakan, K. Mizusawa, “Effect of inspection time and direction of rotation on a generalized form of the spiral aftereffect,” J. Exp. Psychol. 65, 583–586 (1993).
[CrossRef]

T. R. Scott, A. D. Lavender, R. A. McWirth, D. A. Powell, “Directional asymmetry of motion aftereffect,” J. Exp. Psychol. 71, 806–815 (1966).
[CrossRef] [PubMed]

J. Neurophysiol.

Y.-X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994).
[PubMed]

Y.-X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996).
[PubMed]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MDTd neurons,” J. Neurophysiol. 16, 4716–4732 (1996).

J. Neurosci.

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

J. Opt. Soc. Am. A

Nat. Neurosci.

I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998).
[CrossRef]

Percept. Psychophys.

P. J. Bex, C. L. Baker, “Motion perception over long interstimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

Perception

T. Ledgeway, A. T. Smith, “The duration of the motion aftereffect following adaptation to first-order and second-order motion,” Perception 23, 1211–1219 (1994).
[CrossRef] [PubMed]

M. A. Georgeson, M. G. Harris, “Apparent foveofugal drift of counterphase gratings,” Perception 7, 527–536 (1978).
[CrossRef] [PubMed]

K. Ball, R. Sekuler, “Human vision favors centrifugal motion,” Perception 9, 317–325 (1980).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Asymmetries in the sensitivity to motion in depth: a centripetal bias,” Perception 22, 1013–1023 (1993).
[CrossRef] [PubMed]

Proc. R. Soc. London

I. A. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London 257, 165–173 (1994).
[CrossRef]

Proc. R. Soc. London Ser. B

L. M. Vaina, A. Cowey, “Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage,” Proc. R. Soc. London Ser. B 263, 1225–1232 (1996).
[CrossRef]

Psychol. Rev.

J. J. Gibson, “The visual perception of objective and subjective movement,” Psychol. Rev. 61, 304–314 (1954).
[CrossRef] [PubMed]

Science

T. D. Albright, “Form–cue invariant motion processing in the primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

P. Cavanagh, “Attention-based motion perception,” Science 257, 1563–1565 (1992).
[CrossRef] [PubMed]

Y.-X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Spatial Vision

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

Vision Res.

D. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

O. Braddick, “A short-range process in apparent movement,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

K. Nakayama, “Differential motion hyperacuity under conditions of common image motion,” Vision Res. 21, 1475–1482 (1981).
[CrossRef] [PubMed]

C. L. Baker, O. J. Braddick, “Eccentricity-dependent scaling of the limits for short-range apparent motion perception,” Vision Res. 25, 803–812 (1985).
[CrossRef] [PubMed]

K. Nakayama, “Biological motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef]

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 36, 763–773 (1994).
[CrossRef]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1997).
[CrossRef]

J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res. 34, 1029–1037 (1994).
[CrossRef] [PubMed]

Y. Ohtani, Y. Ejima, “Anisotropy for direction discrimination in a two-frame apparent motion display,” Vision Res. 37, 765–767 (1997).
[CrossRef] [PubMed]

S. Mateeff, J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res. 28, 711–719 (1988).
[CrossRef] [PubMed]

S. Mateeff, N. Yakimoff, J. Hohnsbein, W. H. Ehrenstein, Z. Bodanecky, T. Radil, “Selective directional sensitivityin visual motion perception,” Vision Res. 31, 131–138 (1991).
[CrossRef]

S. Mateeff, J. Hohnsbein, W. H. Ehrenstein, N. Yakimoff, “A constant latency difference determines directional anisotropy in visual motion perception,” Vision Res. 31, 2235–2237 (1991).
[CrossRef] [PubMed]

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, M. V. Milders, H. Voerman, “Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers,” Vision Res. 33, 1089–1107 (1992).
[CrossRef]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

M. S. Landy, B. A. Dosher, G. Sperling, M. E. Perkins, “The kinetic depth effect and optic flow—II. First- and second-order motion,” Vision Res. 31, 859–876 (1991).
[CrossRef]

T. Ledgeway, R. F. Hess, “The properties of the motion-detecting mechanisms mediating perceived direction in stochastic displays,” Vision Res. 40, 3585–3597 (2000).
[CrossRef] [PubMed]

N. E. Scott-Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef] [PubMed]

S. Nishida, H. Ashida, T. Sato, “Complete interocular transfer of motion aftereffect with flickering test,” Vision Res. 34, 2707–2716 (1994).
[CrossRef] [PubMed]

R. Gurnsey, D. Fleet, C. Potechin, “Second-order motions contribute to vection,” Vision Res. 38, 1801–2816 (1998).
[CrossRef]

C. Habak, J. Faubert, “Larger effect of aging on the perception of higher-order stimuli,” Vision Res. 40, 943–950 (2000).
[CrossRef] [PubMed]

G. Mather, S. West, “Evidence for second-order detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

S. Nishida, T. Ledgeway, M. Edwards, “Dual multiple-scale processing for motion in the human visual system,” Vision Res. 37, 2685–2698 (1997).
[CrossRef] [PubMed]

N. E. Scott-Samuel, A. T. Smith, “No local cancellation between directionally opposed first-order and second-order signals,” Vision Res. 40, 3495–3500 (2000).
[CrossRef]

G. Mather, “First-order and second-order visual processes in the perception of motion and tilt,” Vision Res. 31, 161–167 (1991).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Motion detection is dependent on spatial frequency not size,” Vision Res. 31, 77–87 (1991).
[CrossRef] [PubMed]

C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997).
[CrossRef] [PubMed]

Visual Neurosci.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

T. D. Albright, “Centrifugal directional bias in the middle temporal visual area (MT) of the macaque,” Visual Neurosci. 2, 177–188 (1989).
[CrossRef]

Other

M. G. Harris, “Optic and retinal flow,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 307–332.

L. R. Harris, “Visual motion caused by movements of the eye, head and body,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 397–435.

E. C. Hildreth, C. S. Royden, “Computing observer motion from optical flow,” in High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 269–293.

A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowdon, eds. (Academic, London, 1994), pp. 145–176.

J. C. Boulton, C. L. Baker, “Psychophysical evidence for both a ‘quasi-linear’ and a ‘non-linear’ mechanism for the detection of motion ,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE2054, 124–133 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spatial layouts (a) and (b) and a space–time diagram (c) of the visual stimuli. (a) Stimulus configuration for the periphery; the viewing distance was 57 cm. (b) Stimulus used for central vision. The viewing distance was 114 cm; i.e., the size of the stimulus was 50% of the stimulus presented in peripheral vision [(a)]. (c) Space–time diagram along a horizontal transect of the stimulus. In this example the coherence was 50%, the lifetime 4, and the spatial displacement 1/4λ rightward.

Fig. 2
Fig. 2

Psychometric functions for central vision (open circles) and at a 20-deg eccentricity (solid circles) for two subjects. For subject SOD the results of a linear filter model (Adelson and Bergen35) are also shown (dashed-dotted curve). The percentage errors in direction discrimination are plotted as a function of the spatial displacement of the Gabor micropatterns. The error bars indicate 95% confidence limits: n=80 (SOD) and n=60 (RFH). For smaller displacements the data follow the prediction of the model; however, at larger displacements the model fails to predict motion detection. Baker and Hess38 suggested that motion perception in this stimulus is carried out by a first-order mechanism responding to the carrier frequency at small displacements and a second-order mechanism responding to the contrast envelopes at large displacements.

Fig. 3
Fig. 3

Psychometric functions at a 20-deg eccentricity for two subjects. The percent errors in direction discrimination are plotted as a function of the spatial displacements of the Gabor patterns: n=80 (SOD) and n=60 (RFH). The carrier orientation of the Gabors was flipped by 90 deg on alternate exposures, thus eliminating the contribution of the first-order mechanism.

Fig. 4
Fig. 4

Spatial layout of the visual stimuli. Stimulus configuration for (a) horizontal motion and (b) vertical motion The stimuli were presented with the center at a 20-deg eccentricity from the fixation point (ranging from 11 to 29 deg) in the left, right, upper, and lower visual fields.

Fig. 5
Fig. 5

0%-coherence trial was intermixed in the trials; i.e., both presentations were of 0% coherence. The data shown here are the average of all four positions. (a), (b) Relative intervals judged to contain the coherent stimulus for two subjects. The plots are for the first or second interval when the stimulus was moving centrifugal/centripetal (first two bars) or clockwise/counterclockwise (last two bars). No clear preference is present. (c), (d) Judgments of direction of motion, revealing internal biases for centrifugal versus centripetal motion for two subjects: SOD, n=640; TL, n=320.

Fig. 6
Fig. 6

(a) Upper visual field, (b) left visual field, (c) right visual field, (d) lower visual field: psychometric functions for vertical motion at four different positions in the visual field for one subject (n=40). Percentage errors in a coherence and direction-discrimination task are plotted as a function of coherence for both first- (top graph parts) and second-order (bottom graph parts) motion. Open circles and dashed curves, motion in the upward direction; solid circles and solid curves, downward motion.

Fig. 7
Fig. 7

Same as Fig. 6, but for horizontal motion.

Fig. 8
Fig. 8

Psychometric functions at a 20-deg eccentricity for two subjects and predictions based on the internal bias. Percent errors in a coherence and direction-discrimination task are plotted as a function of coherence for first-order motion, (a)–(c), and second-order motion, (d)–(f). Standard error of the mean of each point was smaller than the size of the symbols (n=160 and n=80 for observers SOD and TL, respectively). Solid curves and open circles, centrifugal motion; solid curves and solid circles, centripetal motion; dashed curves with open and solid squares, clockwise and counterclockwise motion, respectively. In (c) and (f) the dashed curve represents the average of the clockwise and the counterclockwise percent errors of observers TL and SOD. The percent errors in (c) and (f) for centripetal and centrifugal motion are calculated according to Eq. (2). The thin line represents chance performance (75%).  

Fig. 9
Fig. 9

Percent error in a coherence and direction-discrimination task plotted as a function of the displacement size for two subjects (n=40 for observers SOD and TL). (a), (b) The orientation of the Gabors was changed by 90 deg on alternate exposures thus eliminating contributions from the first-order mechanism. Solid curves and open circles, centrifugal motion; solid curves and solid circles, centripetal motion; dashed curves with open and solid squares, clockwise and counterclockwise motion, respectively. The error bars indicate the upper or lower part of the 95% confidence interval for centripetal and centrifugal motion. The dotted line represents chance performance (75%). (c), (d) Same data as in (a) and (b) are plotted for centripetal and centrifugal motion as well as results of a first-order control experiment at comparable velocities. Solid lines with open and solid squares, centrifugal and centripetal motion, respectively. Dashed lines with open and solid diamonds, clockwise and counterclockwise motion, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L(x, y)=L01+C-(x2/2σx2+y2/2σy2)sin2πxλ.
PEb=CbPEC,

Metrics