Abstract

Exponential extinction of incoherent radiation intensity in a random medium (sometimes referred to as the Beer–Lambert law) arises early in the development of several branches of science and underlies much of radiative transfer theory and propagation in turbid media with applications in astronomy, atmospheric science, and oceanography. We adopt a stochastic approach to exponential extinction and connect it to the underlying Poisson statistics of extinction events. We then show that when a dilute random medium is statistically homogeneous but spatially correlated, the attenuation of incoherent radiation with depth is often slower than exponential. This occurs because spatial correlations among obstacles of the medium spread out the probability distribution of photon extinction events. Therefore the probability of transmission (no extinction) is increased.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription